Menu Close

dx-a-bcosx-2-




Question Number 116999 by TANMAY PANACEA last updated on 08/Oct/20
∫(dx/((a+bcosx)^2 ))
$$\int\frac{{dx}}{\left({a}+{bcosx}\right)^{\mathrm{2}} } \\ $$
Answered by Olaf last updated on 08/Oct/20
I(x) = ∫(dx/((a+b((e^(ix) +e^(−ix) )/2))^2 ))  u = e^(ix)   du = ie^(ix) dx = iudx  dx = −i(du/u)  I(u) = −i∫((du/u)/((a+b((u+(1/u))/2))^2 ))  I(u) = −i∫((udu)/((au+b((u^2 +1)/2))^2 ))  I(u) = −i∫((4udu)/((bu^2 +2au+b)^2 ))  I(u) = −((4i)/b^2 )∫((4udu)/([(u+(a/b))^2 +1−(a^2 /b^2 )]^2 ))  Different cases in function of sign of  1−(a^2 /b^2 )...
$$\mathrm{I}\left({x}\right)\:=\:\int\frac{{dx}}{\left({a}+{b}\frac{{e}^{{ix}} +{e}^{−{ix}} }{\mathrm{2}}\right)^{\mathrm{2}} } \\ $$$${u}\:=\:{e}^{{ix}} \\ $$$${du}\:=\:{ie}^{{ix}} {dx}\:=\:{iudx} \\ $$$${dx}\:=\:−{i}\frac{{du}}{{u}} \\ $$$$\mathrm{I}\left({u}\right)\:=\:−{i}\int\frac{\frac{{du}}{{u}}}{\left({a}+{b}\frac{{u}+\frac{\mathrm{1}}{{u}}}{\mathrm{2}}\right)^{\mathrm{2}} } \\ $$$$\mathrm{I}\left({u}\right)\:=\:−{i}\int\frac{{udu}}{\left({au}+{b}\frac{{u}^{\mathrm{2}} +\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} } \\ $$$$\mathrm{I}\left({u}\right)\:=\:−{i}\int\frac{\mathrm{4}{udu}}{\left({bu}^{\mathrm{2}} +\mathrm{2}{au}+{b}\right)^{\mathrm{2}} } \\ $$$$\mathrm{I}\left({u}\right)\:=\:−\frac{\mathrm{4}{i}}{{b}^{\mathrm{2}} }\int\frac{\mathrm{4}{udu}}{\left[\left({u}+\frac{{a}}{{b}}\right)^{\mathrm{2}} +\mathrm{1}−\frac{{a}^{\mathrm{2}} }{{b}^{\mathrm{2}} }\right]^{\mathrm{2}} } \\ $$$$\mathrm{Different}\:\mathrm{cases}\:\mathrm{in}\:\mathrm{function}\:\mathrm{of}\:\mathrm{sign}\:\mathrm{of} \\ $$$$\mathrm{1}−\frac{{a}^{\mathrm{2}} }{{b}^{\mathrm{2}} }… \\ $$
Answered by mathmax by abdo last updated on 08/Oct/20
let  ϕ(a) =∫  (dx/(a+bcosx)) ⇒ϕ^′ (a) =−∫  (dx/((a+bcosx)^2 )) ⇒  ∫ (dx/((a+bcosx)^2 ))=−ϕ^′ (a)  but ϕ(a) =_(tan((x/2))=t)   ∫   ((2dt)/((1+t^2 )(a+b((1−t^2 )/(1+t^2 )))))  =∫  ((2dt)/(a+at^2  +b−bt^2 )) =2∫  (dt/((a−b)t^2  +a+b))  =(2/(a−b)) ∫  (dt/(t^2 +((a+b)/(a−b))))  case 1  ((a+b)/(a−b))>0  we do ch.t =(√((a+b)/(a−b)))z ⇒  ϕ(a) =(2/(a−b)) ×((a−b)/(a+b)) ∫  (1/(1+z^2 ))((√(a+b))/( (√(a−b))))dz =(2/( (√(a^2 −b^2 )))) arctan((√((a−b)/(a+b)))t)  =(2/( (√(a^2 −b^2 )))) arctan((√((a−b)/(a+b)))tan((x/2)))+c ⇒  ϕ^′ (a) =2(a^2 −b^2 )^(−(1/2))  =−2a(a^2 −b^2 )^(−(3/2))  arctan((√((a−b)/(a+b)))tan((x/2)))  +(2/( (√(a^2 −b^2 ))))tan((x/2))×(((((a−b)/(a+b)))^′ )/(2(√((a−b)/(a+b)))(1+((a−b)/(a+b))tan^2 ((x/2))))) with  (((a−b)/(a+b)))^′  =((a+b−(a−b))/((a+b)^2 )) =((2b)/((a+b)^2 ))  case 2  ((a+b)/(a−b))<0 ⇒ϕ(a) =(2/(a−b))∫  (dt/(t^2 −(((a+b)/(b−a)))))  =_(t =(√((b+a)/(b−a)))u)    (2/(a−b)) ×((b−a)/(b+a)) ∫  (1/(u^2 −1))×((√(b+a))/( (√(b−a)))) du  =((−2)/( (√(b^2 −a^2 ))))∫((1/(u−1))−(1/(u+1)))du =((−2)/( (√(b^2 −a^2 ))))ln∣((u−1)/(u+1))∣ +c  =((−2)/( (√(b^2 −a^2 ))))ln∣(((√((b−a)/(b+a)))tan((x/2))−1)/( (√((b−a)/(b+a)))tan((x/2))+1))∣ +c  rest calculus of ϕ^′ (a)...
$$\mathrm{let}\:\:\varphi\left(\mathrm{a}\right)\:=\int\:\:\frac{\mathrm{dx}}{\mathrm{a}+\mathrm{bcosx}}\:\Rightarrow\varphi^{'} \left(\mathrm{a}\right)\:=−\int\:\:\frac{\mathrm{dx}}{\left(\mathrm{a}+\mathrm{bcosx}\right)^{\mathrm{2}} }\:\Rightarrow \\ $$$$\int\:\frac{\mathrm{dx}}{\left(\mathrm{a}+\mathrm{bcosx}\right)^{\mathrm{2}} }=−\varphi^{'} \left(\mathrm{a}\right)\:\:\mathrm{but}\:\varphi\left(\mathrm{a}\right)\:=_{\mathrm{tan}\left(\frac{\mathrm{x}}{\mathrm{2}}\right)=\mathrm{t}} \:\:\int\:\:\:\frac{\mathrm{2dt}}{\left(\mathrm{1}+\mathrm{t}^{\mathrm{2}} \right)\left(\mathrm{a}+\mathrm{b}\frac{\mathrm{1}−\mathrm{t}^{\mathrm{2}} }{\mathrm{1}+\mathrm{t}^{\mathrm{2}} }\right)} \\ $$$$=\int\:\:\frac{\mathrm{2dt}}{\mathrm{a}+\mathrm{at}^{\mathrm{2}} \:+\mathrm{b}−\mathrm{bt}^{\mathrm{2}} }\:=\mathrm{2}\int\:\:\frac{\mathrm{dt}}{\left(\mathrm{a}−\mathrm{b}\right)\mathrm{t}^{\mathrm{2}} \:+\mathrm{a}+\mathrm{b}} \\ $$$$=\frac{\mathrm{2}}{\mathrm{a}−\mathrm{b}}\:\int\:\:\frac{\mathrm{dt}}{\mathrm{t}^{\mathrm{2}} +\frac{\mathrm{a}+\mathrm{b}}{\mathrm{a}−\mathrm{b}}}\:\:\mathrm{case}\:\mathrm{1}\:\:\frac{\mathrm{a}+\mathrm{b}}{\mathrm{a}−\mathrm{b}}>\mathrm{0}\:\:\mathrm{we}\:\mathrm{do}\:\mathrm{ch}.\mathrm{t}\:=\sqrt{\frac{\mathrm{a}+\mathrm{b}}{\mathrm{a}−\mathrm{b}}}\mathrm{z}\:\Rightarrow \\ $$$$\varphi\left(\mathrm{a}\right)\:=\frac{\mathrm{2}}{\mathrm{a}−\mathrm{b}}\:×\frac{\mathrm{a}−\mathrm{b}}{\mathrm{a}+\mathrm{b}}\:\int\:\:\frac{\mathrm{1}}{\mathrm{1}+\mathrm{z}^{\mathrm{2}} }\frac{\sqrt{\mathrm{a}+\mathrm{b}}}{\:\sqrt{\mathrm{a}−\mathrm{b}}}\mathrm{dz}\:=\frac{\mathrm{2}}{\:\sqrt{\mathrm{a}^{\mathrm{2}} −\mathrm{b}^{\mathrm{2}} }}\:\mathrm{arctan}\left(\sqrt{\frac{\mathrm{a}−\mathrm{b}}{\mathrm{a}+\mathrm{b}}}\mathrm{t}\right) \\ $$$$=\frac{\mathrm{2}}{\:\sqrt{\mathrm{a}^{\mathrm{2}} −\mathrm{b}^{\mathrm{2}} }}\:\mathrm{arctan}\left(\sqrt{\frac{\mathrm{a}−\mathrm{b}}{\mathrm{a}+\mathrm{b}}}\mathrm{tan}\left(\frac{\mathrm{x}}{\mathrm{2}}\right)\right)+\mathrm{c}\:\Rightarrow \\ $$$$\varphi^{'} \left(\mathrm{a}\right)\:=\mathrm{2}\left(\mathrm{a}^{\mathrm{2}} −\mathrm{b}^{\mathrm{2}} \right)^{−\frac{\mathrm{1}}{\mathrm{2}}} \:=−\mathrm{2a}\left(\mathrm{a}^{\mathrm{2}} −\mathrm{b}^{\mathrm{2}} \right)^{−\frac{\mathrm{3}}{\mathrm{2}}} \:\mathrm{arctan}\left(\sqrt{\frac{\mathrm{a}−\mathrm{b}}{\mathrm{a}+\mathrm{b}}}\mathrm{tan}\left(\frac{\mathrm{x}}{\mathrm{2}}\right)\right) \\ $$$$+\frac{\mathrm{2}}{\:\sqrt{\mathrm{a}^{\mathrm{2}} −\mathrm{b}^{\mathrm{2}} }}\mathrm{tan}\left(\frac{\mathrm{x}}{\mathrm{2}}\right)×\frac{\left(\frac{\mathrm{a}−\mathrm{b}}{\mathrm{a}+\mathrm{b}}\right)^{'} }{\mathrm{2}\sqrt{\frac{\mathrm{a}−\mathrm{b}}{\mathrm{a}+\mathrm{b}}}\left(\mathrm{1}+\frac{\mathrm{a}−\mathrm{b}}{\mathrm{a}+\mathrm{b}}\mathrm{tan}^{\mathrm{2}} \left(\frac{\mathrm{x}}{\mathrm{2}}\right)\right)}\:\mathrm{with} \\ $$$$\left(\frac{\mathrm{a}−\mathrm{b}}{\mathrm{a}+\mathrm{b}}\right)^{'} \:=\frac{\mathrm{a}+\mathrm{b}−\left(\mathrm{a}−\mathrm{b}\right)}{\left(\mathrm{a}+\mathrm{b}\right)^{\mathrm{2}} }\:=\frac{\mathrm{2b}}{\left(\mathrm{a}+\mathrm{b}\right)^{\mathrm{2}} } \\ $$$$\mathrm{case}\:\mathrm{2}\:\:\frac{\mathrm{a}+\mathrm{b}}{\mathrm{a}−\mathrm{b}}<\mathrm{0}\:\Rightarrow\varphi\left(\mathrm{a}\right)\:=\frac{\mathrm{2}}{\mathrm{a}−\mathrm{b}}\int\:\:\frac{\mathrm{dt}}{\mathrm{t}^{\mathrm{2}} −\left(\frac{\mathrm{a}+\mathrm{b}}{\mathrm{b}−\mathrm{a}}\right)} \\ $$$$=_{\mathrm{t}\:=\sqrt{\frac{\mathrm{b}+\mathrm{a}}{\mathrm{b}−\mathrm{a}}}\mathrm{u}} \:\:\:\frac{\mathrm{2}}{\mathrm{a}−\mathrm{b}}\:×\frac{\mathrm{b}−\mathrm{a}}{\mathrm{b}+\mathrm{a}}\:\int\:\:\frac{\mathrm{1}}{\mathrm{u}^{\mathrm{2}} −\mathrm{1}}×\frac{\sqrt{\mathrm{b}+\mathrm{a}}}{\:\sqrt{\mathrm{b}−\mathrm{a}}}\:\mathrm{du} \\ $$$$=\frac{−\mathrm{2}}{\:\sqrt{\mathrm{b}^{\mathrm{2}} −\mathrm{a}^{\mathrm{2}} }}\int\left(\frac{\mathrm{1}}{\mathrm{u}−\mathrm{1}}−\frac{\mathrm{1}}{\mathrm{u}+\mathrm{1}}\right)\mathrm{du}\:=\frac{−\mathrm{2}}{\:\sqrt{\mathrm{b}^{\mathrm{2}} −\mathrm{a}^{\mathrm{2}} }}\mathrm{ln}\mid\frac{\mathrm{u}−\mathrm{1}}{\mathrm{u}+\mathrm{1}}\mid\:+\mathrm{c} \\ $$$$=\frac{−\mathrm{2}}{\:\sqrt{\mathrm{b}^{\mathrm{2}} −\mathrm{a}^{\mathrm{2}} }}\mathrm{ln}\mid\frac{\sqrt{\frac{\mathrm{b}−\mathrm{a}}{\mathrm{b}+\mathrm{a}}}\mathrm{tan}\left(\frac{\mathrm{x}}{\mathrm{2}}\right)−\mathrm{1}}{\:\sqrt{\frac{\mathrm{b}−\mathrm{a}}{\mathrm{b}+\mathrm{a}}}\mathrm{tan}\left(\frac{\mathrm{x}}{\mathrm{2}}\right)+\mathrm{1}}\mid\:+\mathrm{c} \\ $$$$\mathrm{rest}\:\mathrm{calculus}\:\mathrm{of}\:\varphi^{'} \left(\mathrm{a}\right)… \\ $$
Answered by TANMAY PANACEA last updated on 09/Oct/20
p=((sinx)/(a+bcosx))→(dp/dx)=(((a+bcosx)cosx−sinx(−bsinx))/((a+bcosx)^2 ))  (dp/dx)=((acosx+b)/((a+bcosx)^2 ))=(((a/b)(bcosx+a−a)+b)/((a+bcosx)^2 ))  (dp/dx)=((a/b)/((a+bcosx)))+(((b^2 −a^2 )/b)/((a+bcosx)^2 ))  ∫d(((sinx)/(a+bcosx)))=(a/b)∫(dx/(b((a/b)+((1−tan^2 (x/2))/(1+tan^2 (x/2))))))+((b^2 −a^2 )/b)×I  ((sinx)/(a+bcosx))=(a/b^2 )∫((sec^2 (x/2))/((a/b)+1+((a/b)−1)tan^2 (x/2)))dx+((b^2 −a^2 )/b)×I  ((sinx)/(a+bcosx))=(a/b^2 )∫((sec^2 (x/2))/(((a/b)−1)(((a+b)/b)×(b/(a−b))+tan^2 (x/2))))+((b^2 −a^2 )/b)I  ((sinx)/(a+bcosx))=(a/b^2 )×(b/((a−b)))∫((d(tan(x/2))×2)/({((√((a+b)/(a−b))) )^2 +tan^2 (x/2)))+((b^2 −a^2 )/b)×I  ((b/(b^2 −a^2 )))(((sinx)/(a+bcosx)))=(a/b)×(1/(a−b))×((2b)/((a+b)(a−b)))×(1/( (√((a+b)/(a−b)))))×tan^(−1) (((tan(x/2))/( (√((a+b)/(a−b))))))+I  so I=  (b/(b^2 −a^2 ))(((sinx)/(a+bcosx)))−((2a)/((a+b)(a−b)^2 ))×((√(a−b))/( (√(a+b))))×tan^(−1) (((tan(x/2))/( (√((a+b)/(a−b))))))+C  I=(b/(b^2 −a^2 ))(((sinx)/(a+bcosx)))−((2a)/((a^2 −b^2 )^(3/2) ))tan^(−1) (((tan(x/2))/( (√((a+b)/(a−b))))))+C  pls check
$${p}=\frac{{sinx}}{{a}+{bcosx}}\rightarrow\frac{{dp}}{{dx}}=\frac{\left({a}+{bcosx}\right){cosx}−{sinx}\left(−{bsinx}\right)}{\left({a}+{bcosx}\right)^{\mathrm{2}} } \\ $$$$\frac{{dp}}{{dx}}=\frac{{acosx}+{b}}{\left({a}+{bcosx}\right)^{\mathrm{2}} }=\frac{\frac{{a}}{{b}}\left({bcosx}+{a}−{a}\right)+{b}}{\left({a}+{bcosx}\right)^{\mathrm{2}} } \\ $$$$\frac{{dp}}{{dx}}=\frac{\frac{{a}}{{b}}}{\left({a}+{bcosx}\right)}+\frac{\frac{{b}^{\mathrm{2}} −{a}^{\mathrm{2}} }{{b}}}{\left({a}+{bcosx}\right)^{\mathrm{2}} } \\ $$$$\int{d}\left(\frac{{sinx}}{{a}+{bcosx}}\right)=\frac{{a}}{{b}}\int\frac{{dx}}{{b}\left(\frac{{a}}{{b}}+\frac{\mathrm{1}−{tan}^{\mathrm{2}} \frac{{x}}{\mathrm{2}}}{\mathrm{1}+{tan}^{\mathrm{2}} \frac{{x}}{\mathrm{2}}}\right)}+\frac{{b}^{\mathrm{2}} −{a}^{\mathrm{2}} }{{b}}×{I} \\ $$$$\frac{{sinx}}{{a}+{bcosx}}=\frac{{a}}{{b}^{\mathrm{2}} }\int\frac{{sec}^{\mathrm{2}} \frac{{x}}{\mathrm{2}}}{\frac{{a}}{{b}}+\mathrm{1}+\left(\frac{{a}}{{b}}−\mathrm{1}\right){tan}^{\mathrm{2}} \frac{{x}}{\mathrm{2}}}{dx}+\frac{{b}^{\mathrm{2}} −{a}^{\mathrm{2}} }{{b}}×{I} \\ $$$$\frac{{sinx}}{{a}+{bcosx}}=\frac{{a}}{{b}^{\mathrm{2}} }\int\frac{{sec}^{\mathrm{2}} \frac{{x}}{\mathrm{2}}}{\left(\frac{{a}}{{b}}−\mathrm{1}\right)\left(\frac{{a}+{b}}{{b}}×\frac{{b}}{{a}−{b}}+{tan}^{\mathrm{2}} \frac{{x}}{\mathrm{2}}\right)}+\frac{{b}^{\mathrm{2}} −{a}^{\mathrm{2}} }{{b}}\boldsymbol{{I}} \\ $$$$\frac{{sinx}}{{a}+{bcosx}}=\frac{{a}}{{b}^{\mathrm{2}} }×\frac{{b}}{\left({a}−{b}\right)}\int\frac{{d}\left({tan}\frac{{x}}{\mathrm{2}}\right)×\mathrm{2}}{\left\{\left(\sqrt{\frac{{a}+{b}}{{a}−{b}}}\:\right)^{\mathrm{2}} +{tan}^{\mathrm{2}} \frac{{x}}{\mathrm{2}}\right.}+\frac{{b}^{\mathrm{2}} −{a}^{\mathrm{2}} }{{b}}×{I} \\ $$$$\left(\frac{{b}}{{b}^{\mathrm{2}} −{a}^{\mathrm{2}} }\right)\left(\frac{{sinx}}{{a}+{bcosx}}\right)=\frac{{a}}{{b}}×\frac{\mathrm{1}}{{a}−{b}}×\frac{\mathrm{2}{b}}{\left({a}+{b}\right)\left({a}−{b}\right)}×\frac{\mathrm{1}}{\:\sqrt{\frac{{a}+{b}}{{a}−{b}}}}×{tan}^{−\mathrm{1}} \left(\frac{{tan}\frac{{x}}{\mathrm{2}}}{\:\sqrt{\frac{{a}+{b}}{{a}−{b}}}}\right)+\boldsymbol{{I}} \\ $$$${so}\:{I}= \\ $$$$\frac{{b}}{{b}^{\mathrm{2}} −{a}^{\mathrm{2}} }\left(\frac{{sinx}}{{a}+{bcosx}}\right)−\frac{\mathrm{2}{a}}{\left({a}+{b}\right)\left({a}−{b}\right)^{\mathrm{2}} }×\frac{\sqrt{{a}−{b}}}{\:\sqrt{{a}+{b}}}×{tan}^{−\mathrm{1}} \left(\frac{{tan}\frac{{x}}{\mathrm{2}}}{\:\sqrt{\frac{{a}+{b}}{{a}−{b}}}}\right)+{C} \\ $$$${I}=\frac{{b}}{{b}^{\mathrm{2}} −{a}^{\mathrm{2}} }\left(\frac{{sinx}}{{a}+{bcosx}}\right)−\frac{\mathrm{2}{a}}{\left({a}^{\mathrm{2}} −{b}^{\mathrm{2}} \right)^{\frac{\mathrm{3}}{\mathrm{2}}} }{tan}^{−\mathrm{1}} \left(\frac{{tan}\frac{{x}}{\mathrm{2}}}{\:\sqrt{\frac{{a}+{b}}{{a}−{b}}}}\right)+{C} \\ $$$$\boldsymbol{{pls}}\:\boldsymbol{{check}} \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *