Question Number 86428 by jagoll last updated on 28/Mar/20
$$\int\:\:\frac{\mathrm{dx}}{\mathrm{a}\:\mathrm{cos}\:\mathrm{x}\:+\:\mathrm{b}\:\mathrm{sin}\:\mathrm{x}}? \\ $$
Commented by jagoll last updated on 28/Mar/20
$$\mathrm{standard}\:\mathrm{solving} \\ $$$$\mathrm{a}\:\mathrm{cos}\:\mathrm{x}\:+\:\mathrm{b}\:\mathrm{sin}\:\mathrm{x}\:=\:\mathrm{k}\:\mathrm{cos}\:\left(\mathrm{x}−\theta\right) \\ $$$$\int\:\frac{\mathrm{dx}}{\mathrm{k}\:\mathrm{cos}\:\left(\mathrm{x}−\theta\right)}\:=\:\frac{\mathrm{1}}{\mathrm{k}}\int\:\mathrm{sec}\:\left(\mathrm{x}−\theta\right)\:\mathrm{dx} \\ $$$$=\:\frac{\mathrm{1}}{\mathrm{k}}\:\mathrm{ln}\:\mid\:\mathrm{sec}\:\left(\mathrm{x}−\theta\right)+\mathrm{tan}\:\left(\mathrm{x}−\theta\right)\mid\:+\:\mathrm{c} \\ $$$$=\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{a}^{\mathrm{2}} +\mathrm{b}^{\mathrm{2}} }}\:\mathrm{ln}\:\mid\:\mathrm{sec}\:\left(\mathrm{x}−\mathrm{tan}^{−\mathrm{1}} \left(\frac{\mathrm{b}}{\mathrm{a}}\right)+\:\mathrm{tan}\:\left(\mathrm{x}−\mathrm{tan}^{−\mathrm{1}} \left(\frac{\mathrm{b}}{\mathrm{a}}\right)\right)\mid\:+\mathrm{c}\:\right. \\ $$
Commented by abdomathmax last updated on 28/Mar/20
$${I}\:=\int\:\:\frac{{dx}}{{acosx}\:+{bsinx}}\:\Rightarrow \\ $$$${I}=_{{tan}\left(\frac{{x}}{\mathrm{2}}\right)={t}} \:\:\:\:\:\:\int\:\:\frac{\mathrm{2}{dt}}{\left(\mathrm{1}+{t}^{\mathrm{2}} \right)\left({a}\frac{\mathrm{1}−{t}^{\mathrm{2}} }{\mathrm{1}+{t}^{\mathrm{2}} }\:+\frac{\mathrm{2}{bt}}{\mathrm{1}+{t}^{\mathrm{2}} }\right)} \\ $$$$=\int\:\:\:\:\frac{\mathrm{2}{dt}}{{a}−{at}^{\mathrm{2}} +\mathrm{2}{bt}}\:=\int\:\:\frac{−\mathrm{2}{dt}}{{at}^{\mathrm{2}} −\mathrm{2}{bt}\:−{a}} \\ $$$$\Delta^{'} =\:{b}^{\mathrm{2}} +{a}^{\mathrm{2}} \:>\mathrm{0}\:\Rightarrow{t}_{\mathrm{1}} =\frac{{b}+\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }}{{a}}\:\:\left({we}\:{suppose}\:{a}\neq\mathrm{0}\right) \\ $$$${t}_{\mathrm{2}} =\frac{{b}−\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }}{{a}}\:\Rightarrow{I}\:=−\mathrm{2}\int\:\:\frac{{dt}}{\left({t}−{t}_{\mathrm{1}} \right)\left({t}−{t}_{\mathrm{2}} \right)} \\ $$$$=\frac{−\mathrm{2}}{\frac{\mathrm{2}\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }}{{a}}}\:\int\:\:\left(\frac{\mathrm{1}}{{t}−{t}_{\mathrm{1}} }−\frac{\mathrm{1}}{{t}−{t}_{\mathrm{2}} }\right){dt} \\ $$$$=−\frac{{a}}{\:\sqrt{{a}^{\mathrm{2}} \:+{b}^{\mathrm{2}} }}{ln}\mid\frac{{t}−{t}_{\mathrm{1}} }{{t}−{t}_{\mathrm{2}} }\mid\:+{C} \\ $$$$=−\frac{{a}}{\:\sqrt{{a}^{\mathrm{2}} \:+{b}^{\mathrm{2}} }}{ln}\mid\frac{{t}−\frac{{b}+\sqrt{{a}^{\mathrm{2}} \:+{b}^{\mathrm{2}} }}{{a}}}{{t}−\frac{{b}−\sqrt{{a}^{\mathrm{2}} \:+{b}^{\mathrm{2}} }}{{a}}}\mid\:+{C} \\ $$$${I}=−\frac{{a}}{\:\sqrt{{a}^{\mathrm{2}} \:+{b}^{\mathrm{2}} }}{ln}\mid\frac{{at}−{b}−\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }}{{at}−{b}+\sqrt{{a}^{\mathrm{2}} \:+{b}^{\mathrm{2}} }}\mid\:+{C} \\ $$