Menu Close

dx-Acos-x-B-




Question Number 104459 by bemath last updated on 21/Jul/20
∫ (dx/( (√(Acos x+B))))
$$\int\:\frac{{dx}}{\:\sqrt{{A}\mathrm{cos}\:{x}+{B}}} \\ $$
Commented by Dwaipayan Shikari last updated on 21/Jul/20
∫(dx/( (√(Acosx+B))))=∫((A(−sinx))/(−Asinx)).(1/( (√(Acosx+B))))dx  {Acosx+B=t^2   ∫((2tdt)/(t(−Asinx)))=−(2/A)∫(1/(sinx))dt                        {cosx=(t^2 −B).(1/A)   −(2/A)∫ (1/( (√(A^2 −(t^2 −B)^2 ))))dt                                  {sinx=(√(1−(((t^2 −B)/A))^2 ))  −(2/A)∫((2tdt)/(2t(√(A^2 −u^2 ))))                               {t^2 −B=u  −(1/A)∫(du/( (√(u+B)))).(1/( (√(A^2 −u^2 ))))....continue
$$\int\frac{{dx}}{\:\sqrt{{Acosx}+{B}}}=\int\frac{{A}\left(−{sinx}\right)}{−{Asinx}}.\frac{\mathrm{1}}{\:\sqrt{{Acosx}+{B}}}{dx}\:\:\left\{{Acosx}+{B}={t}^{\mathrm{2}} \right. \\ $$$$\int\frac{\mathrm{2}{tdt}}{{t}\left(−{Asinx}\right)}=−\frac{\mathrm{2}}{{A}}\int\frac{\mathrm{1}}{{sinx}}{dt}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left\{{cosx}=\left({t}^{\mathrm{2}} −{B}\right).\frac{\mathrm{1}}{{A}}\right. \\ $$$$\:−\frac{\mathrm{2}}{{A}}\int\:\frac{\mathrm{1}}{\:\sqrt{{A}^{\mathrm{2}} −\left({t}^{\mathrm{2}} −{B}\right)^{\mathrm{2}} }}{dt}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left\{{sinx}=\sqrt{\mathrm{1}−\left(\frac{{t}^{\mathrm{2}} −{B}}{{A}}\right)^{\mathrm{2}} }\right. \\ $$$$−\frac{\mathrm{2}}{{A}}\int\frac{\mathrm{2}{tdt}}{\mathrm{2}{t}\sqrt{{A}^{\mathrm{2}} −{u}^{\mathrm{2}} }}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left\{{t}^{\mathrm{2}} −{B}={u}\right. \\ $$$$−\frac{\mathrm{1}}{{A}}\int\frac{{du}}{\:\sqrt{{u}+{B}}}.\frac{\mathrm{1}}{\:\sqrt{{A}^{\mathrm{2}} −{u}^{\mathrm{2}} }}….{continue} \\ $$$$ \\ $$$$ \\ $$
Answered by bobhans last updated on 21/Jul/20
I = ∫ (dx/( (√(Acos x+B)))) . let x = π−t   I = ∫ ((−dt)/( (√(−Acos t+B)) )) = ∫ ((−dx)/( (√(−Acos x+B))))  2I = ∫ (1/( (√(Acos x+B)))) −(1/( (√(−Acos x+B)))) dx  2I= ∫ (((√(B−Acos x))−(√(B+Acos x)))/( (√(B^2 −A^2 cos^2 x)))) dx
$${I}\:=\:\int\:\frac{{dx}}{\:\sqrt{{A}\mathrm{cos}\:{x}+{B}}}\:.\:{let}\:{x}\:=\:\pi−{t}\: \\ $$$${I}\:=\:\int\:\frac{−{dt}}{\:\sqrt{−{A}\mathrm{cos}\:{t}+{B}}\:}\:=\:\int\:\frac{−{dx}}{\:\sqrt{−{A}\mathrm{cos}\:{x}+{B}}} \\ $$$$\mathrm{2}{I}\:=\:\int\:\frac{\mathrm{1}}{\:\sqrt{{A}\mathrm{cos}\:{x}+{B}}}\:−\frac{\mathrm{1}}{\:\sqrt{−{A}\mathrm{cos}\:{x}+{B}}}\:{dx} \\ $$$$\mathrm{2}{I}=\:\int\:\frac{\sqrt{{B}−{A}\mathrm{cos}\:{x}}−\sqrt{{B}+{A}\mathrm{cos}\:{x}}}{\:\sqrt{{B}^{\mathrm{2}} −{A}^{\mathrm{2}} \mathrm{cos}\:^{\mathrm{2}} {x}}}\:{dx} \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *