dx-cos-x-cosec-x- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 152291 by iloveisrael last updated on 27/Aug/21 ∫dxcosx+cosecx=? Answered by puissant last updated on 27/Aug/21 I=∫dxcosx+cosecx=∫sinxcosxsinx+1dx=∫2sinxsin2x+2dx=∫sinx+cosxsin2x+2dx+∫sinx−cosxsin2x+2dxt=sinx−cosx→dt=(sinx+cosx)dxt2=1−sin2x⇒sin2x=1−t2u=sinx+cosx→−du=(sinx−cosx)dxu2=1+sin2x→sin2x=u2−1⇒I=∫dt1−t2+2−∫duu2−1+2=∫dt(3)2−(t)2−∫du(u)2+(1)2=123ln∣3−t3+t∣−arctan(u)+C∴∵I=123ln∣3−(sinx−cosx)3+(sinx−cosx)∣−arctan(sinx+cosx)+C.. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: lim-x-0-1-tan-2-x-6-sin-2-x-Next Next post: lim-x-pi-2-pi-2x-tan-x- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.