Menu Close

dx-cos-x-cosec-x-




Question Number 152291 by iloveisrael last updated on 27/Aug/21
 ∫ (dx/(cos x+cosec x)) =?
$$\:\int\:\frac{{dx}}{\mathrm{cos}\:{x}+\mathrm{cosec}\:{x}}\:=? \\ $$
Answered by puissant last updated on 27/Aug/21
I=∫(dx/(cosx+cosecx))  =∫((sinx)/(cosxsinx+1))dx = ∫((2sinx)/(sin2x+2))dx  =∫((sinx+cosx)/(sin2x+2))dx+∫((sinx−cosx)/(sin2x+2))dx  t=sinx−cosx → dt=(sinx+cosx)dx  t^2 =1−sin2x ⇒ sin2x= 1−t^2   u=sinx+cosx → −du=(sinx−cosx)dx  u^2 =1+sin2x → sin2x= u^2 −1    ⇒ I=∫(dt/(1−t^2 +2))−∫(du/(u^2 −1+2))  =∫(dt/(((√3))^2 −(t)^2 ))−∫(du/((u)^2 +(1)^2 ))  =(1/(2(√3)))ln∣(((√3)−t)/( (√3)+t))∣−arctan(u)+C    ∴∵I=(1/(2(√3)))ln∣(((√3)−(sinx−cosx))/( (√3)+(sinx−cosx)))∣−arctan(sinx+cosx)+C..
$${I}=\int\frac{{dx}}{{cosx}+{cosecx}} \\ $$$$=\int\frac{{sinx}}{{cosxsinx}+\mathrm{1}}{dx}\:=\:\int\frac{\mathrm{2}{sinx}}{{sin}\mathrm{2}{x}+\mathrm{2}}{dx} \\ $$$$=\int\frac{{sinx}+{cosx}}{{sin}\mathrm{2}{x}+\mathrm{2}}{dx}+\int\frac{{sinx}−{cosx}}{{sin}\mathrm{2}{x}+\mathrm{2}}{dx} \\ $$$${t}={sinx}−{cosx}\:\rightarrow\:{dt}=\left({sinx}+{cosx}\right){dx} \\ $$$${t}^{\mathrm{2}} =\mathrm{1}−{sin}\mathrm{2}{x}\:\Rightarrow\:{sin}\mathrm{2}{x}=\:\mathrm{1}−{t}^{\mathrm{2}} \\ $$$${u}={sinx}+{cosx}\:\rightarrow\:−{du}=\left({sinx}−{cosx}\right){dx} \\ $$$${u}^{\mathrm{2}} =\mathrm{1}+{sin}\mathrm{2}{x}\:\rightarrow\:{sin}\mathrm{2}{x}=\:{u}^{\mathrm{2}} −\mathrm{1} \\ $$$$ \\ $$$$\Rightarrow\:{I}=\int\frac{{dt}}{\mathrm{1}−{t}^{\mathrm{2}} +\mathrm{2}}−\int\frac{{du}}{{u}^{\mathrm{2}} −\mathrm{1}+\mathrm{2}} \\ $$$$=\int\frac{{dt}}{\left(\sqrt{\mathrm{3}}\right)^{\mathrm{2}} −\left({t}\right)^{\mathrm{2}} }−\int\frac{{du}}{\left({u}\right)^{\mathrm{2}} +\left(\mathrm{1}\right)^{\mathrm{2}} } \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{3}}}{ln}\mid\frac{\sqrt{\mathrm{3}}−{t}}{\:\sqrt{\mathrm{3}}+{t}}\mid−{arctan}\left({u}\right)+{C} \\ $$$$ \\ $$$$\therefore\because{I}=\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{3}}}{ln}\mid\frac{\sqrt{\mathrm{3}}−\left({sinx}−{cosx}\right)}{\:\sqrt{\mathrm{3}}+\left({sinx}−{cosx}\right)}\mid−{arctan}\left({sinx}+{cosx}\right)+{C}.. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *