dx-cot-3-x-sin-7-x- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 178487 by cortano1 last updated on 17/Oct/22 ∫dxcot3xsin7x=? Answered by Frix last updated on 18/Oct/22 ∫dxcot3xsin7x=∫dxcos3xsin4x=t=sinx=∫dtt4(t2−1)2=Ostrogradski′sMethod=−15t4−10t2−26t3(t2−1)+54∫(1t+1−1t+1)dt==−15t4−10t2−26t3(t2−1)+5lnt+1t−14==15sin4x−10sin2x−26cos2xsin3x+54ln1+sinx1−sinx+C Answered by Ar Brandon last updated on 17/Oct/22 I=∫dxcot3xsin7x=∫dxcos3xsin4x=∫sec7xtan4xdx=−sec5x3tan3x+53∫sec5xtan2xdx=−sec5x3tan3x−5sec3x3tanx+5∫sec3xdx=−sec5x3tanx−5sec3x3tanx+5∫cosxcos4xdx=−sec5x3tanx−5sec3x3tanx+5∫cosx(1−sin2x)2dx=−sec5x3tanx−5sec3x3tanx+54∫(1(1−sinx)2+21−sin2x+1(1+sinx)2)d(sinx)=−sec5x3tanx−5sec3x3tanx+54(11−sinx+2tanx−11+sinx)+C=−sec5x3tanx−5sec3x3tanx+52secxtanx+52tanx+C Answered by greougoury555 last updated on 18/Oct/22 lets=sinxI=∫ds(1−s2)2s4=∫ds((1−s2)s2)2Partialfractions1[(1−s2)s2]2=(11−s2+1s2)2=(11−s2)2+2(1−s2)s2+1s4=[12(11−s+11+s)]2+21−s2+2s2+1s4=14(1−s)2+52(1−s2)+14(1+s)2+2s2+1s4I=∫ds(1−s2)2s4=∫[14(1−s)2+52(1−s2)+14(1+s)2+2s2+1s4]ds=14(1−s)+54ln∣1+s1−s∣−14(1+s)−2s−13s3+c=14(1−sinx)+54ln∣1+sinx1−sinx∣−14(1+sinx)−2sinx−13sin3x+c Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Calculate-1999-2-1998-2-1997-2-1996-2-2-2-1-2-Next Next post: Question-47420 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.