Menu Close

dx-cot-3-x-sin-7-x-




Question Number 178487 by cortano1 last updated on 17/Oct/22
                ∫ (dx/(cot^3 x sin^7 x)) =?
dxcot3xsin7x=?
Answered by Frix last updated on 18/Oct/22
∫(dx/(cot^3  x sin^7  x))=∫(dx/(cos^3  x sin^4  x))=^(t=sin x)   =∫(dt/(t^4 (t^2 −1)^2 ))=_(Method) ^(Ostrogradski′s)   =−((15t^4 −10t^2 −2)/(6t^3 (t^2 −1)))+(5/4)∫((1/(t+1))−(1/(t+1)))dt=  =−((15t^4 −10t^2 −2)/(6t^3 (t^2 −1)))+((5ln ((t+1)/(t−1)))/4)=  =((15sin^4  x −10sin^2  x −2)/(6cos^2  x sin^3  x))+(5/4)ln ((1+sin x)/(1−sin x)) +C
dxcot3xsin7x=dxcos3xsin4x=t=sinx=dtt4(t21)2=OstrogradskisMethod=15t410t226t3(t21)+54(1t+11t+1)dt==15t410t226t3(t21)+5lnt+1t14==15sin4x10sin2x26cos2xsin3x+54ln1+sinx1sinx+C
Answered by Ar Brandon last updated on 17/Oct/22
I=∫(dx/(cot^3 xsin^7 x))=∫(dx/(cos^3 xsin^4 x))=∫((sec^7 x)/(tan^4 x))dx    =−((sec^5 x)/(3tan^3 x))+(5/3)∫((sec^5 x)/(tan^2 x))dx=−((sec^5 x)/(3tan^3 x))−((5sec^3 x)/(3tanx))+5∫sec^3 xdx    =−((sec^5 x)/(3tanx))−((5sec^3 x)/(3tanx))+5∫((cosx)/(cos^4 x))dx=−((sec^5 x)/(3tanx))−((5sec^3 x)/(3tanx))+5∫((cosx)/((1−sin^2 x)^2 ))dx    =−((sec^5 x)/(3tanx))−((5sec^3 x)/(3tanx))+(5/4)∫((1/((1−sinx)^2 ))+(2/(1−sin^2 x))+(1/((1+sinx)^2 )))d(sinx)    =−((sec^5 x)/(3tanx))−((5sec^3 x)/(3tanx))+(5/4)((1/(1−sinx))+2tanx−(1/(1+sinx)))+C    =−((sec^5 x)/(3tanx))−((5sec^3 x)/(3tanx))+(5/2)secxtanx+(5/2)tanx+C
I=dxcot3xsin7x=dxcos3xsin4x=sec7xtan4xdx=sec5x3tan3x+53sec5xtan2xdx=sec5x3tan3x5sec3x3tanx+5sec3xdx=sec5x3tanx5sec3x3tanx+5cosxcos4xdx=sec5x3tanx5sec3x3tanx+5cosx(1sin2x)2dx=sec5x3tanx5sec3x3tanx+54(1(1sinx)2+21sin2x+1(1+sinx)2)d(sinx)=sec5x3tanx5sec3x3tanx+54(11sinx+2tanx11+sinx)+C=sec5x3tanx5sec3x3tanx+52secxtanx+52tanx+C
Answered by greougoury555 last updated on 18/Oct/22
 let s=sin x   I= ∫ (ds/((1−s^2 )^2 s^4 )) =∫ (ds/(((1−s^2 )s^2 )^2 ))  Partial fractions    (1/([(1−s^2 )s^2  ]^2 )) = ((1/(1−s^2 )) +(1/s^2 ))^2     = ((1/(1−s^2 )))^2 +(2/((1−s^2 )s^2 )) +(1/s^4 )   = [ (1/2)((1/(1−s)) +(1/(1+s)))]^2 +(2/(1−s^2 )) +(2/s^2 )+(1/s^4 )   = (1/(4(1−s)^2 )) +(5/(2(1−s^2 )))+(1/(4(1+s)^2 ))+(2/s^2 )+(1/s^4 )   I=∫ (ds/((1−s^2 )^2 s^4 )) = ∫ [ (1/(4(1−s)^2 )) +(5/(2(1−s^2 )))+(1/(4(1+s)^2 ))+(2/s^2 )+(1/s^4 ) ]ds   = (1/(4(1−s)))+(5/4) ln ∣((1+s)/(1−s)) ∣−(1/(4(1+s)))−(2/s)−(1/(3s^3 )) +c   = (1/(4(1−sin x))) +(5/4) ln ∣((1+sin x)/(1−sin x))∣−(1/(4(1+sin x)))−(2/(sin x))−(1/(3sin^3 x)) + c
lets=sinxI=ds(1s2)2s4=ds((1s2)s2)2Partialfractions1[(1s2)s2]2=(11s2+1s2)2=(11s2)2+2(1s2)s2+1s4=[12(11s+11+s)]2+21s2+2s2+1s4=14(1s)2+52(1s2)+14(1+s)2+2s2+1s4I=ds(1s2)2s4=[14(1s)2+52(1s2)+14(1+s)2+2s2+1s4]ds=14(1s)+54ln1+s1s14(1+s)2s13s3+c=14(1sinx)+54ln1+sinx1sinx14(1+sinx)2sinx13sin3x+c

Leave a Reply

Your email address will not be published. Required fields are marked *