dx-csc-x-cos-x- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 175602 by cortano1 last updated on 03/Sep/22 ∫dxcscx+cosx=? Commented by infinityaction last updated on 04/Sep/22 ∫2sinx2+2sinx.cosxdxI=∫Ψ(sinx+cosx)dx3−(sinx−cosx)2+∫Φ(sinx−cosx)dx1+(sinx+cosx)2sinx−cosx=y(sinx+cosx)dx=dyΨ=∫dx(3)2−y2=123log∣3+y3−y∣+c1Ψ=123log∣3+sinx−cosx3−sinx+cosx∣nowΦ=∫(sinx−cosx)dx1+(sinx+cosx)2sinx+cosx=r−(sinx−cosx)dx=drΦ=−∫dr1+r2=−tan−1r+c2Φ=−{tan−1(sinx+cosx)}+c2I=Ψ+ΦI=123log∣3+sinx−cosx3−sinx+cosx∣−{tan−1(sinx+cosx)}+λ Commented by Tawa11 last updated on 15/Sep/22 Greatsir. Answered by Frix last updated on 03/Sep/22 ∫dxcscx+cosx=t=tan(x2+π8)dx=2dtt2+1=22∫t2+2t−1t4+10t2+1dt==33∫(t−3+6t2+5−26−t−3−6t2+5+26)dt==36ln(t2+5−26)−tan−1((3+2)t)−−36ln(t2+5+26)+tan−1((3−2)t)==36lnt2+5−26t2+5+26−tan−122tt2+1therestiseasy Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Find-moment-of-inertia-of-the-area-bounded-by-the-curve-r-2-a-2-cos2-about-its-axis-Next Next post: Question-175601 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.