Menu Close

dx-csc-x-cos-x-




Question Number 175602 by cortano1 last updated on 03/Sep/22
 ∫ (dx/(csc x+ cos x)) =?
dxcscx+cosx=?
Commented by infinityaction last updated on 04/Sep/22
  ∫((2sinx )/(2+2sinx.cosx ))dx  I =∫_Ψ (((sinx+cosx)  dx)/(  3−(sinx−cosx)^2   ))+∫_Φ (((sinx −cosx) dx)/(1+(sinx+cosx)^2  ))        sinx − cosx  = y      (sinx + cosx)dx = dy       Ψ =  ∫ (dx/( ((√3))^2 −y^2 )) = (1/(2(√3)))log∣(((√3)+y)/( (√3)−y))∣+c_1        Ψ = (1/(2(√3)))log∣(((√3)+sinx−cosx  )/( (√3)−sinx+cosx  ))∣   now      Φ = ∫(((sinx − cosx)dx )/(1+(sinx+cosx)^2   ))            sinx + cosx = r     −(sinx − cosx )dx = dr     Φ  = −∫(dr/(1+r^2 )) = −tan^(−1) r +c_2     Φ = −{tan^(−1) (sinx + cosx)}+c_2        I  = Ψ+Φ   I = (1/(2(√3)))log∣(((√3) +sinx−cosx  )/( (√3) −sinx+cosx  ))∣−             {tan^(−1) (sinx+cosx)}+λ
2sinx2+2sinx.cosxdxI=Ψ(sinx+cosx)dx3(sinxcosx)2+Φ(sinxcosx)dx1+(sinx+cosx)2sinxcosx=y(sinx+cosx)dx=dyΨ=dx(3)2y2=123log3+y3y+c1Ψ=123log3+sinxcosx3sinx+cosxnowΦ=(sinxcosx)dx1+(sinx+cosx)2sinx+cosx=r(sinxcosx)dx=drΦ=dr1+r2=tan1r+c2Φ={tan1(sinx+cosx)}+c2I=Ψ+ΦI=123log3+sinxcosx3sinx+cosx{tan1(sinx+cosx)}+λ
Commented by Tawa11 last updated on 15/Sep/22
Great sir.
Greatsir.
Answered by Frix last updated on 03/Sep/22
∫(dx/(csc x +cos x))=_(dx=((2dt)/(t^2 +1))) ^(t=tan ((x/2)+(π/8)))   =2(√2)∫((t^2 +2t−1)/(t^4 +10t^2 +1))dt=  =((√3)/3)∫(((t−3+(√6))/(t^2 +5−2(√6)))−((t−3−(√6))/(t^2 +5+2(√6))))dt=  =((√3)/6)ln (t^2 +5−2(√6)) −tan^(−1)  (((√3)+(√2))t) −  −((√3)/6)ln (t^2 +5+2(√6)) +tan^(−1)  (((√3)−(√2))t) =  =((√3)/6)ln ((t^2 +5−2(√6))/(t^2 +5+2(√6))) −tan^(−1)  ((2(√2)t)/(t^2 +1))  the rest is easy
dxcscx+cosx=t=tan(x2+π8)dx=2dtt2+1=22t2+2t1t4+10t2+1dt==33(t3+6t2+526t36t2+5+26)dt==36ln(t2+526)tan1((3+2)t)36ln(t2+5+26)+tan1((32)t)==36lnt2+526t2+5+26tan122tt2+1therestiseasy

Leave a Reply

Your email address will not be published. Required fields are marked *