Menu Close

dx-cscx-1-




Question Number 187526 by sciencestudentW last updated on 18/Feb/23
∫(dx/(cscx−1))=?
dxcscx1=?
Answered by ARUNG_Brandon_MBU last updated on 18/Feb/23
I=∫(dx/(cosecx−1))    =∫((sinx)/(1−sinx))dx=∫((1/(1−sinx))−1)dx    =∫((1+sinx)/(cos^2 x))dx−x=tanx+(1/(cosx))−x+C
I=dxcosecx1=sinx1sinxdx=(11sinx1)dx=1+sinxcos2xdxx=tanx+1cosxx+C
Answered by floor(10²Eta[1]) last updated on 18/Feb/23
  ∫((senx)/(1−senx))dx  u=tg((x/2))⇒(2/(u^2 +1))du=dx  ∫((4u)/((u−1)^2 (u^2 +1)))du=∫(2/((u−1)^2 ))du−∫(2/(u^2 +1))du  =−(2/(u−1))−2arctg(u)+C  =(2/(1−tg((x/2))))−x+C
senx1senxdxu=tg(x2)2u2+1du=dx4u(u1)2(u2+1)du=2(u1)2du2u2+1du=2u12arctg(u)+C=21tg(x2)x+C

Leave a Reply

Your email address will not be published. Required fields are marked *