Menu Close

dx-sin-4-x-




Question Number 158053 by Ar Brandon last updated on 30/Oct/21
∫(dx/(sin^4 x))
$$\int\frac{{dx}}{\mathrm{sin}^{\mathrm{4}} {x}} \\ $$
Answered by ajfour last updated on 30/Oct/21
∫(dx/([1−cos^2 x]^2 ))=∫(((1+t^2 )dt)/t^4 )  =−(1/(3t^3 ))−(1/t)+c  =c−(((1+3tan^2 x)/(3tan^3 x))) .
$$\int\frac{{dx}}{\left[\mathrm{1}−\mathrm{cos}\:^{\mathrm{2}} {x}\right]^{\mathrm{2}} }=\int\frac{\left(\mathrm{1}+{t}^{\mathrm{2}} \right){dt}}{{t}^{\mathrm{4}} } \\ $$$$=−\frac{\mathrm{1}}{\mathrm{3}{t}^{\mathrm{3}} }−\frac{\mathrm{1}}{{t}}+{c} \\ $$$$={c}−\left(\frac{\mathrm{1}+\mathrm{3tan}\:^{\mathrm{2}} {x}}{\mathrm{3tan}\:^{\mathrm{3}} {x}}\right)\:. \\ $$
Answered by puissant last updated on 30/Oct/21
Ω=∫(1/(sin^4 x))dx = ∫((sec^4 x)/(tan^4 x))dx   u=tanx → du=sec^2 xdx  ⇒ Ω = ∫((sec^2 x)/u^4 )du ⇒ Ω = ∫((1+u^2 )/u^4 )du  = ∫{(1/u^4 )+(1/u^2 )}du = −(1/(3u^3 ))−(1/u)+C               ∴∵  Ω = −(1/3)cotan^3 x−cotanx+C
$$\Omega=\int\frac{\mathrm{1}}{{sin}^{\mathrm{4}} {x}}{dx}\:=\:\int\frac{{sec}^{\mathrm{4}} {x}}{{tan}^{\mathrm{4}} {x}}{dx}\: \\ $$$${u}={tanx}\:\rightarrow\:{du}={sec}^{\mathrm{2}} {xdx} \\ $$$$\Rightarrow\:\Omega\:=\:\int\frac{{sec}^{\mathrm{2}} {x}}{{u}^{\mathrm{4}} }{du}\:\Rightarrow\:\Omega\:=\:\int\frac{\mathrm{1}+{u}^{\mathrm{2}} }{{u}^{\mathrm{4}} }{du} \\ $$$$=\:\int\left\{\frac{\mathrm{1}}{{u}^{\mathrm{4}} }+\frac{\mathrm{1}}{{u}^{\mathrm{2}} }\right\}{du}\:=\:−\frac{\mathrm{1}}{\mathrm{3}{u}^{\mathrm{3}} }−\frac{\mathrm{1}}{{u}}+{C} \\ $$$$\:\:\:\:\:\:\:\:\:\: \\ $$$$\:\therefore\because\:\:\Omega\:=\:−\frac{\mathrm{1}}{\mathrm{3}}{cotan}^{\mathrm{3}} {x}−{cotanx}+{C} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *