Question Number 157929 by akolade last updated on 30/Oct/21
$$\int\frac{\mathrm{dx}}{\mathrm{sin}\:\mathrm{x}+\:\mathrm{sec}\:\mathrm{x}} \\ $$$$\mathrm{using}\:\mathrm{wiestress}\:\mathrm{substitution} \\ $$
Commented by cortano last updated on 30/Oct/21
$${C}\:=\:\int\:\frac{\mathrm{1}}{\:\mathrm{sin}\:{x}+\mathrm{sec}\:{x}}\:{dx}\: \\ $$$$\:\left[\:\mathrm{tan}\:\frac{{x}}{\mathrm{2}}\:=\:{u}\:\rightarrow\begin{cases}{\mathrm{sin}\:{x}\:=\frac{\mathrm{2}{u}}{\mathrm{1}+{u}^{\mathrm{2}} }}\\{\mathrm{cos}\:{x}=\frac{\mathrm{1}−{u}^{\mathrm{2}} }{\mathrm{1}+{u}^{\mathrm{2}} }}\\{{dx}=\frac{\mathrm{2}}{\mathrm{1}+{u}^{\mathrm{2}} }\:{du}}\end{cases}\right] \\ $$$${C}=\:\int\:\frac{\mathrm{1}}{\left[\frac{\mathrm{2}{u}}{\mathrm{1}+{u}^{\mathrm{2}} }+\frac{\mathrm{1}+{u}^{\mathrm{2}} }{\mathrm{1}−{u}^{\mathrm{2}} }\right]}\:\left(\frac{\mathrm{2}}{\mathrm{1}+{u}^{\mathrm{2}} }\right){du} \\ $$$${C}=\mathrm{2}\int\:\frac{\left(\mathrm{1}−{u}^{\mathrm{2}} \right)}{\mathrm{2}{u}\left(\mathrm{1}−{u}^{\mathrm{2}} \right)+\left(\mathrm{1}+{u}^{\mathrm{2}} \right)^{\mathrm{2}} }\:{du}\: \\ $$$${C}=\mathrm{2}\int\:\frac{\mathrm{1}−{u}^{\mathrm{2}} }{\mathrm{2}{u}−\mathrm{2}{u}^{\mathrm{3}} +{u}^{\mathrm{4}} +\mathrm{2}{u}^{\mathrm{2}} +\mathrm{1}}\:{du} \\ $$$$ \\ $$