Menu Close

dx-sin-x-sec-x-using-wiestress-substitution-




Question Number 157929 by akolade last updated on 30/Oct/21
∫(dx/(sin x+ sec x))  using wiestress substitution
dxsinx+secxusingwiestresssubstitution
Commented by cortano last updated on 30/Oct/21
C = ∫ (1/( sin x+sec x)) dx    [ tan (x/2) = u → { ((sin x =((2u)/(1+u^2 )))),((cos x=((1−u^2 )/(1+u^2 )))),((dx=(2/(1+u^2 )) du)) :}]  C= ∫ (1/([((2u)/(1+u^2 ))+((1+u^2 )/(1−u^2 ))])) ((2/(1+u^2 )))du  C=2∫ (((1−u^2 ))/(2u(1−u^2 )+(1+u^2 )^2 )) du   C=2∫ ((1−u^2 )/(2u−2u^3 +u^4 +2u^2 +1)) du
C=1sinx+secxdx[tanx2=u{sinx=2u1+u2cosx=1u21+u2dx=21+u2du]C=1[2u1+u2+1+u21u2](21+u2)duC=2(1u2)2u(1u2)+(1+u2)2duC=21u22u2u3+u4+2u2+1du

Leave a Reply

Your email address will not be published. Required fields are marked *