Menu Close

dx-x-1-2-x-2-1-




Question Number 118145 by bemath last updated on 15/Oct/20
∫ (dx/((x+1)^2 (x^2 +1))) ?
dx(x+1)2(x2+1)?
Commented by bobhans last updated on 15/Oct/20
Decomposition fractional   (1/((x+1)^2 (x^2 +1))) = (A/(x+1))+(B/((x+1)^2 )) +((Cx+D)/(x^2 +1))  ⇒ 1=A(x+1)+B(x^2 +1)+(Cx+D)(x+1)^2   put x=−1⇒1=2B; B=(1/2)  put x=0⇒1=A+(1/2)+D ; A+D=(1/2)  put x=−2⇒1=−A+(5/2)+D−2C; −A+D−2C=−(3/2)  put x=1⇒1=2A+1+4C+4D; A+2C+2D=0  we get A=1; C=0 ; D=−(1/2).  so integral can be written as   I = ∫(dx/(x+1))+∫ (dx/(2(x+1)^2 ))−∫ (dx/(2(x^2 +1)))  I= ln ∣x+1∣ −(1/(2(x+1)))−(1/2)arc tan (x) + c
Decompositionfractional1(x+1)2(x2+1)=Ax+1+B(x+1)2+Cx+Dx2+11=A(x+1)+B(x2+1)+(Cx+D)(x+1)2putx=11=2B;B=12putx=01=A+12+D;A+D=12putx=21=A+52+D2C;A+D2C=32putx=11=2A+1+4C+4D;A+2C+2D=0wegetA=1;C=0;D=12.sointegralcanbewrittenasI=dxx+1+dx2(x+1)2dx2(x2+1)I=lnx+112(x+1)12arctan(x)+c
Answered by Dwaipayan Shikari last updated on 15/Oct/20
∫(dx/((x+1)^2 (x^2 +1)))dx  ∫(1/(2x(x^2 +1)))−(1/(2x(x+1)^2 ))dx  =(1/2)∫(1/x)−(x/(x^2 +1))−(1/2)∫(1/((x+1)))((1/x)−(1/((x+1))))  =(1/2)log(x)−(1/4)log(x^2 +1)−(1/2)log(x)+(1/2)log(x+1)−(1/(2(x+1)))  =(1/2)(log(x+1)−(1/(x+1))−(1/2)log(x^2 +1))+C  =(1/2)(log(((x+1)/( (√(x^2 +1)))))−(1/(x+1)))+C
dx(x+1)2(x2+1)dx12x(x2+1)12x(x+1)2dx=121xxx2+1121(x+1)(1x1(x+1))=12log(x)14log(x2+1)12log(x)+12log(x+1)12(x+1)=12(log(x+1)1x+112log(x2+1))+C=12(log(x+1x2+1)1x+1)+C
Answered by 1549442205PVT last updated on 15/Oct/20
(1/((x+1)^2 (x^2 +1)))=((ax+b)/(x^2 +2x+1))+((cx+d)/(x^2 +1))  ⇔(a+c)x^3 ++(b+2c+d)x^2 +(a+c+2d)x+b+d≡1  ⇔ { ((a+c=0)),((b+2c+d=0)),((a+c+2d=0)),((b+d=1)) :} ⇔ { ((d=0,b=1)),((c=−1/2,a=1/2)) :}  ⇒∫ (dx/((x+1)^2 (x^2 +1))) =∫(((x+2)/(2(x+1)^2 ))−(x/(2(x^2 +1))))dx  (1/2)∫(((x+1)/((x+1)^2 ))+(1/((x+1)^2 ))−(x/(x^2 +1)))=  =(1/2)[∫(dx/(x+1))+∫(dx/((x+1)^2 ))−(1/2)∫((d(x^2 +1))/(x^2 +1))]  =(1/2)ln∣x+1∣−(1/(2(x+1)))−(1/4)ln∣x^2 +1∣+C
1(x+1)2(x2+1)=ax+bx2+2x+1+cx+dx2+1(a+c)x3++(b+2c+d)x2+(a+c+2d)x+b+d1{a+c=0b+2c+d=0a+c+2d=0b+d=1{d=0,b=1c=1/2,a=1/2dx(x+1)2(x2+1)=(x+22(x+1)2x2(x2+1))dx12(x+1(x+1)2+1(x+1)2xx2+1)==12[dxx+1+dx(x+1)212d(x2+1)x2+1]=12lnx+112(x+1)14lnx2+1+C
Answered by Bird last updated on 16/Oct/20
complex method  I =∫  (dx/((x+1)^2 (x−i)(x+i)))  =∫   (dx/((((x+1)/(x−i)))^2 (x−i)^3 (x+i)))  let ((x+1)/(x−i))=t ⇒x+1=tx−it ⇒  (1−t)x =−it−1 ⇒x =((−it−1)/(1−t))  =((it+1)/(t−1)) ⇒(dx/dt) =((i(t−1)−it−1)/((t−1)^2 ))  =((−i−1)/((t−1)^2 )) also x−i=((it+1)/(t−1))−i  =((it+1−it+i)/(t−1)) =((1+i)/(t−1)) and  x+i =((it+1)/(t−1))+i =((it+1+it−i)/(t−1))  =((2it+1−i)/(t−1)) ⇒  I =∫  ((−i−1)/((t−1)^2 (((1+i)/(t−1)))^3 (((2it+1−i)/(t−1)))))dt  =(−i−1)∫   (((t−1)^4 )/((t−1)^2 (1+i)^3 (2it+1−i)))  =−(1/((1+i)^2 ))∫   (((t−1)^2 )/((2it+1−i)))dt but  ∫  (((t−1)^2 )/((2it+1−i)))dt∫  ((t^2 −2t+1)/(2i(t+((1−i)/(2i)))))dt  =(1/(2i))∫ ((t^2 −2t+1)/(t+α))dt     (α=((1−i)/(2i)))  =(1/(2i))∫ ((t(t+α)−αt−2t+1)/(t+α))dt  =(1/(2i))(t^2 /2) −((α+2)/(2i))∫  (t/(t+α))dt +(1/(2i))ln(t+α)  =(t^2 /(4i))−((α+2)/(2i))∫ ((t+α−α)/(t+α))dt+(1/(2i))ln(t+α)  =(t^2 /(4i))−((α+2)/(2i))t +((α^2 +2α)/(2i))ln(t+α)  +(1/(2i))ln(t+α) +C  with t=((x+1)/(x−i)) we get  I =(1/(4i))(((x+1)/(x−i)))^2 −((α+2)/(2i))(((x+1)/(x−i)))  +(1/(2i))(α+1)^2 ln(((x+1)/(x−i)) +α) +C
complexmethodI=dx(x+1)2(xi)(x+i)=dx(x+1xi)2(xi)3(x+i)letx+1xi=tx+1=txit(1t)x=it1x=it11t=it+1t1dxdt=i(t1)it1(t1)2=i1(t1)2alsoxi=it+1t1i=it+1it+it1=1+it1andx+i=it+1t1+i=it+1+itit1=2it+1it1I=i1(t1)2(1+it1)3(2it+1it1)dt=(i1)(t1)4(t1)2(1+i)3(2it+1i)=1(1+i)2(t1)2(2it+1i)dtbut(t1)2(2it+1i)dtt22t+12i(t+1i2i)dt=12it22t+1t+αdt(α=1i2i)=12it(t+α)αt2t+1t+αdt=12it22α+22itt+αdt+12iln(t+α)=t24iα+22it+ααt+αdt+12iln(t+α)=t24iα+22it+α2+2α2iln(t+α)+12iln(t+α)+Cwitht=x+1xiwegetI=14i(x+1xi)2α+22i(x+1xi)+12i(α+1)2ln(x+1xi+α)+C

Leave a Reply

Your email address will not be published. Required fields are marked *