Question Number 118145 by bemath last updated on 15/Oct/20

Commented by bobhans last updated on 15/Oct/20

Answered by Dwaipayan Shikari last updated on 15/Oct/20

Answered by 1549442205PVT last updated on 15/Oct/20
![(1/((x+1)^2 (x^2 +1)))=((ax+b)/(x^2 +2x+1))+((cx+d)/(x^2 +1)) ⇔(a+c)x^3 ++(b+2c+d)x^2 +(a+c+2d)x+b+d≡1 ⇔ { ((a+c=0)),((b+2c+d=0)),((a+c+2d=0)),((b+d=1)) :} ⇔ { ((d=0,b=1)),((c=−1/2,a=1/2)) :} ⇒∫ (dx/((x+1)^2 (x^2 +1))) =∫(((x+2)/(2(x+1)^2 ))−(x/(2(x^2 +1))))dx (1/2)∫(((x+1)/((x+1)^2 ))+(1/((x+1)^2 ))−(x/(x^2 +1)))= =(1/2)[∫(dx/(x+1))+∫(dx/((x+1)^2 ))−(1/2)∫((d(x^2 +1))/(x^2 +1))] =(1/2)ln∣x+1∣−(1/(2(x+1)))−(1/4)ln∣x^2 +1∣+C](https://www.tinkutara.com/question/Q118154.png)
Answered by Bird last updated on 16/Oct/20
