Question Number 187317 by ajfour last updated on 15/Feb/23
$$\int\frac{{dx}}{{x}\sqrt{\mathrm{1}−\mathrm{2}{x}}} \\ $$
Answered by MJS_new last updated on 15/Feb/23
$$\int\frac{{dx}}{{x}\sqrt{\mathrm{1}−\mathrm{2}{x}}}= \\ $$$$\:\:\:\:\:\left[{t}=\sqrt{\mathrm{1}−\mathrm{2}{x}}\:\rightarrow\:{dx}=−\sqrt{\mathrm{1}−\mathrm{2}{x}}{dt}\right] \\ $$$$=\mathrm{2}\int\frac{{dt}}{{t}^{\mathrm{2}} −\mathrm{1}}=\mathrm{ln}\:\frac{{t}−\mathrm{1}}{{t}+\mathrm{1}}\:= \\ $$$$=\mathrm{ln}\:\mid\frac{\mathrm{1}−\sqrt{\mathrm{1}−\mathrm{2}{x}}}{\mathrm{1}+\sqrt{\mathrm{1}−\mathrm{2}{x}}}\mid\:+{C} \\ $$
Commented by ajfour last updated on 16/Feb/23
$${thank}\:{you},\:{i}\:{shall}\:{make}\:{good}\:{use} \\ $$$${of}\:{it}! \\ $$
Answered by Humble last updated on 16/Feb/23
$${let}\:{u}\:=\:\mathrm{1}−\mathrm{2}{x} \\ $$$$\int\frac{\mathrm{1}}{\:\sqrt{{u}}\left({u}−\mathrm{1}\right)}{du} \\ $$$${let}\:{s}=\sqrt{{u}}\:==>\:{u}={s}^{\mathrm{2}} \\ $$$${ds}\:=\frac{\mathrm{1}}{\mathrm{2}\sqrt{{u}}}{du}\:==>\:{du}=\mathrm{2}\sqrt{{u}\:}{ds} \\ $$$$\int\frac{\mathrm{2}\sqrt{{u}}}{\:\sqrt{{u}}\left({s}^{\mathrm{2}} −\mathrm{1}\right)}{ds} \\ $$$$\int\frac{\mathrm{2}}{\left({s}^{\mathrm{2}} −\mathrm{1}\right)}{ds} \\ $$$$\mathrm{2}\int\frac{\mathrm{1}}{\left({s}^{\mathrm{2}} −\mathrm{1}\right)}{ds}\:\:==>\:\mathrm{2}\left[−\left(\frac{{ln}\mid{s}+\mathrm{1}\mid}{\mathrm{2}}−\frac{{ln}\mid{s}−\mathrm{1}\mid}{\mathrm{2}}\right)\right] \\ $$$${s}=\sqrt{{u}}==>\:{u}=\sqrt{\mathrm{1}−\mathrm{2}{x}} \\ $$$$−{ln}\mid\sqrt{\mathrm{1}−\mathrm{2}{x}}+\mathrm{1}\mid\:+{ln}\mid\sqrt{\mathrm{1}−\mathrm{2}{x}}−\mathrm{1}\mid \\ $$$${ln}\mid\sqrt{\mathrm{1}−\mathrm{2}{x}}−\mathrm{1}\mid\:−\:{ln}\mid\sqrt{\mathrm{1}−\mathrm{2}{x}}+\mathrm{1}\mid+{C} \\ $$$$ \\ $$