Menu Close

dx-x-1-5-6-x-2-7-6-




Question Number 184112 by cortano1 last updated on 03/Jan/23
  ∫ (dx/((x−1)^(5/6) (x+2)^(7/6) )) =?
$$\:\:\int\:\frac{{dx}}{\left({x}−\mathrm{1}\right)^{\mathrm{5}/\mathrm{6}} \left({x}+\mathrm{2}\right)^{\mathrm{7}/\mathrm{6}} }\:=? \\ $$
Commented by sahalu last updated on 03/Jan/23
  ∫ (dx/((x−1)^(5/6) (x+2)^(7/6) )) =? {: (∫),() }
$$\:\:\int\:\frac{{dx}}{\left({x}−\mathrm{1}\right)^{\mathrm{5}/\mathrm{6}} \left({x}+\mathrm{2}\right)^{\mathrm{7}/\mathrm{6}} }\:=?\left.\begin{matrix}{\int}\\{}\end{matrix}\right\} \\ $$
Answered by Frix last updated on 03/Jan/23
∫(dx/((x−1)^(5/6) (x+2)^(7/6) ))=^(     [t=(((x−1)/(x+2)))^(1/6) ]     )   =2∫dt=2t=2(((x−1)/(x+2)))^(1/6) +C
$$\int\frac{{dx}}{\left({x}−\mathrm{1}\right)^{\frac{\mathrm{5}}{\mathrm{6}}} \left({x}+\mathrm{2}\right)^{\frac{\mathrm{7}}{\mathrm{6}}} }\overset{\:\:\:\:\:\left[{t}=\left(\frac{{x}−\mathrm{1}}{{x}+\mathrm{2}}\right)^{\frac{\mathrm{1}}{\mathrm{6}}} \right]\:\:\:\:\:} {=} \\ $$$$=\mathrm{2}\int{dt}=\mathrm{2}{t}=\mathrm{2}\left(\frac{{x}−\mathrm{1}}{{x}+\mathrm{2}}\right)^{\frac{\mathrm{1}}{\mathrm{6}}} +{C} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *