Question Number 116391 by bobhans last updated on 03/Oct/20
$$\int\:\frac{\mathrm{dx}}{\left(\mathrm{x}+\mathrm{1}\right)\sqrt{\mathrm{x}}\:}\:? \\ $$
Commented by TANMAY PANACEA last updated on 03/Oct/20
$${how}\:{to}\:{post}\:{question}… \\ $$$${here}\:{i}\:{am}\:{sharing}\:{intregation}…{Tanmay} \\ $$$$\int\frac{{sin}\theta}{{cos}\mathrm{3}\theta}+\frac{{sin}\mathrm{3}\theta}{{cos}\mathrm{9}\theta}+\frac{{sin}\mathrm{9}\theta}{{cos}\mathrm{27}\theta}\:{d}\theta \\ $$
Commented by Dwaipayan Shikari last updated on 03/Oct/20
$$\mathrm{Tap}\:+\:\mathrm{to}\:\mathrm{post}\:\mathrm{question} \\ $$
Commented by TANMAY PANACEA last updated on 03/Oct/20
$${ok}\:{thank}\:{you}\:{sir} \\ $$
Commented by Dwaipayan Shikari last updated on 03/Oct/20
$$\int\frac{\mathrm{sin}\theta}{\mathrm{4cos}^{\mathrm{3}} \theta−\mathrm{3cos}\theta}+\int\frac{\mathrm{sin3}\theta}{\mathrm{4cos}^{\mathrm{3}} \mathrm{3}\theta−\mathrm{3cos3}\theta}+\int\frac{\mathrm{sin9}\theta}{\mathrm{4cos}^{\mathrm{3}} \mathrm{9}\theta−\mathrm{3cos9}\theta} \\ $$$$=\int\frac{−\mathrm{dt}}{\mathrm{4t}^{\mathrm{3}} −\mathrm{3t}}−\frac{\mathrm{1}}{\mathrm{3}}\int\frac{\mathrm{du}}{\mathrm{4u}^{\mathrm{3}} −\mathrm{3u}}−\frac{\mathrm{1}}{\mathrm{9}}\int\frac{\mathrm{dp}}{\mathrm{4p}^{\mathrm{3}} −\mathrm{3p}} \\ $$$$\Rightarrow\int\frac{−\mathrm{dt}}{\mathrm{t}\left(\mathrm{4t}^{\mathrm{2}} −\mathrm{3}\right)}=\frac{\mathrm{1}}{\mathrm{3}}\int\frac{\mathrm{1}}{\mathrm{t}}−\frac{\mathrm{4t}}{\mathrm{4t}^{\mathrm{2}} −\mathrm{3}}=\frac{\mathrm{1}}{\mathrm{3}}\mathrm{log}\left(\mathrm{t}\right)−\frac{\mathrm{1}}{\mathrm{6}}\mathrm{log}\left(\mathrm{4t}^{\mathrm{2}} −\mathrm{3}\right) \\ $$$$\mathrm{And}\:\mathrm{similarly} \\ $$$$−\frac{\mathrm{1}}{\mathrm{3}}\int\frac{\mathrm{du}}{\mathrm{4u}^{\mathrm{3}} −\mathrm{3u}}=\frac{\mathrm{1}}{\mathrm{9}}\mathrm{log}\left(\mathrm{u}\right)−\frac{\mathrm{1}}{\mathrm{18}}\mathrm{log}\left(\mathrm{4u}^{\mathrm{2}} −\mathrm{3}\right) \\ $$$$−\frac{\mathrm{1}}{\mathrm{3}}\int\frac{\mathrm{dp}}{\mathrm{4p}^{\mathrm{3}} −\mathrm{3p}}=\frac{\mathrm{1}}{\mathrm{27}}\mathrm{log}\left(\mathrm{p}\right)−\frac{\mathrm{1}}{\mathrm{54}}\mathrm{log}\left(\mathrm{4p}^{\mathrm{2}} −\mathrm{3}\right) \\ $$$$\mathrm{Integral}\:\mathrm{is} \\ $$$$\frac{\mathrm{1}}{\mathrm{3}}\left(\mathrm{log}\left(\mathrm{cos}\theta.\mathrm{cos}^{\frac{\mathrm{1}}{\mathrm{3}}} \theta.\mathrm{cos}^{\frac{\mathrm{1}}{\mathrm{9}}} \mathrm{9}\theta\right)\right)−\frac{\mathrm{1}}{\mathrm{6}}\left(\mathrm{log}\left(\left(\mathrm{4cos}^{\mathrm{2}} \theta−\mathrm{3}\right)\left(\mathrm{4cos}^{\mathrm{2}} \mathrm{3}\theta−\mathrm{3}\right)^{\frac{\mathrm{1}}{\mathrm{3}}} \left(\mathrm{4cos}^{\mathrm{2}} \mathrm{9}\theta−\mathrm{3}\right)^{\frac{\mathrm{1}}{\mathrm{9}}} \right)+\mathrm{C}\right. \\ $$
Commented by Dwaipayan Shikari last updated on 03/Oct/20
$$\mathrm{Kindly}\:\mathrm{don}'\mathrm{t}\:\mathrm{tell}\:\mathrm{me}\:\mathrm{sir}.\:\mathrm{I}\:\mathrm{am}\:\mathrm{a}\:\mathrm{student}.\mathrm{Thanking}\:\mathrm{you} \\ $$
Commented by mnjuly1970 last updated on 03/Oct/20
$$\:\:{good}\:{for}\:\:{you}\:\:{nice}\:{solution} \\ $$$${peace}\:\:{be}\:{upon}\:{you}… \\ $$
Commented by TANMAY PANACEA last updated on 03/Oct/20
$${tan}\mathrm{3}\theta−{tan}\theta \\ $$$$=\frac{{sin}\mathrm{3}\theta{cos}\theta−{sin}\theta{cos}\mathrm{3}\theta}{{cos}\mathrm{3}\theta{cos}\theta}=\frac{\mathrm{2}{sin}\theta{cos}\theta}{{cos}\mathrm{3}\theta{cos}\theta} \\ $$$$\frac{{sin}\theta}{{cos}\mathrm{3}\theta}=\frac{\mathrm{1}}{\mathrm{2}}\left[{tan}\mathrm{3}\theta−{tan}\theta\right] \\ $$$$\frac{{sin}\mathrm{3}\theta}{{cos}\mathrm{9}\theta}=\frac{\mathrm{1}}{\mathrm{2}}\left[{tan}\mathrm{9}\theta−{tan}\mathrm{3}\theta\right] \\ $$$$\frac{{sin}\mathrm{9}\theta}{{cos}\mathrm{27}\theta}=\frac{\mathrm{1}}{\mathrm{2}}\left[{tan}\mathrm{27}\theta−{tan}\mathrm{9}\theta\right] \\ $$$${add}\:{them}=\frac{\mathrm{1}}{\mathrm{2}}\left[{tan}\mathrm{27}\theta−{tan}\theta\right] \\ $$$${so}\:{I}=\int\frac{\mathrm{1}}{\mathrm{2}}\left({tan}\mathrm{27}\theta−{tan}\theta\right){d}\theta \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\left[\frac{{lnsec}\mathrm{27}\theta}{\mathrm{27}}−{lnsec}\theta\right]+{c} \\ $$$$ \\ $$
Answered by bemath last updated on 03/Oct/20
$$\:\int\:\frac{\mathrm{dx}}{\left(\mathrm{x}+\mathrm{1}\right)\sqrt{\mathrm{x}}\:}\:? \\ $$$$\:\mathrm{Letting}\:\mathrm{x}\:=\:\mathrm{h}^{\mathrm{2}} \:\rightarrow\mathrm{dx}=\mathrm{2h}\:\mathrm{dh} \\ $$$$\int\:\frac{\mathrm{2h}\:\mathrm{dh}}{\left(\mathrm{h}^{\mathrm{2}} +\mathrm{1}\right).\mathrm{h}}\:=\:\int\:\frac{\mathrm{2}\:\mathrm{dh}}{\mathrm{h}^{\mathrm{2}} +\mathrm{1}}\:=\:\mathrm{2}\:\mathrm{tan}^{−\mathrm{1}} \left(\mathrm{h}\right)\:+\:\mathrm{c} \\ $$$$\:=\:\mathrm{2tan}^{−\mathrm{1}} \left(\sqrt{\mathrm{x}}\:\right)\:+\:\mathrm{c}\: \\ $$