Menu Close

dx-x-1-x-2-2x-




Question Number 176180 by gloriousman last updated on 14/Sep/22
∫(dx/((x+1)(√(x^2 +2x))))
$$\int\frac{\mathrm{dx}}{\left(\mathrm{x}+\mathrm{1}\right)\sqrt{\mathrm{x}^{\mathrm{2}} +\mathrm{2x}}} \\ $$$$ \\ $$
Answered by Ar Brandon last updated on 14/Sep/22
I=∫(dx/((x+1)(√(x^2 +2x))))=∫(dx/((x+1)(√((x+1)^2 −1))))    =sgn(x+1)∫(dx/((x+1)^2 (√(1−(1/(x+1)))))), t=(1/(x+1)) ⇒dt=−(dx/((x+1)^2 ))  ⇒I=−sgn(t)∫(dt/( (√(1−t))))=−sgn(t)(2(√(1−t)))+C          =−sgn(x+1)(2(√(1−(1/(x+1)))))+C=−sgn(x+1)(((2(√x))/( (√(x+1)))))+C
$${I}=\int\frac{{dx}}{\left({x}+\mathrm{1}\right)\sqrt{{x}^{\mathrm{2}} +\mathrm{2}{x}}}=\int\frac{{dx}}{\left({x}+\mathrm{1}\right)\sqrt{\left({x}+\mathrm{1}\right)^{\mathrm{2}} −\mathrm{1}}} \\ $$$$\:\:=\mathrm{sgn}\left({x}+\mathrm{1}\right)\int\frac{{dx}}{\left({x}+\mathrm{1}\right)^{\mathrm{2}} \sqrt{\mathrm{1}−\frac{\mathrm{1}}{{x}+\mathrm{1}}}},\:{t}=\frac{\mathrm{1}}{{x}+\mathrm{1}}\:\Rightarrow{dt}=−\frac{{dx}}{\left({x}+\mathrm{1}\right)^{\mathrm{2}} } \\ $$$$\Rightarrow{I}=−\mathrm{sgn}\left({t}\right)\int\frac{{dt}}{\:\sqrt{\mathrm{1}−{t}}}=−\mathrm{sgn}\left({t}\right)\left(\mathrm{2}\sqrt{\mathrm{1}−{t}}\right)+{C} \\ $$$$\:\:\:\:\:\:\:\:=−\mathrm{sgn}\left({x}+\mathrm{1}\right)\left(\mathrm{2}\sqrt{\mathrm{1}−\frac{\mathrm{1}}{{x}+\mathrm{1}}}\right)+{C}=−\mathrm{sgn}\left({x}+\mathrm{1}\right)\left(\frac{\mathrm{2}\sqrt{{x}}}{\:\sqrt{{x}+\mathrm{1}}}\right)+{C} \\ $$
Answered by qaz last updated on 14/Sep/22
y=(√(x^2 +2x))   z=x+1   ⇒y^2 =z^2 −1   ydy=zdz  ⇒I=∫(dz/(zy))=∫(dy/z^2 )=∫(dy/(y^2 +1))=arctan y+c  =arctan (√(x^2 +2x))+c
$${y}=\sqrt{{x}^{\mathrm{2}} +\mathrm{2}{x}}\:\:\:{z}={x}+\mathrm{1}\:\:\:\Rightarrow{y}^{\mathrm{2}} ={z}^{\mathrm{2}} −\mathrm{1}\:\:\:{ydy}={zdz} \\ $$$$\Rightarrow{I}=\int\frac{{dz}}{{zy}}=\int\frac{{dy}}{{z}^{\mathrm{2}} }=\int\frac{{dy}}{{y}^{\mathrm{2}} +\mathrm{1}}=\mathrm{arctan}\:{y}+{c} \\ $$$$=\mathrm{arctan}\:\sqrt{{x}^{\mathrm{2}} +\mathrm{2}{x}}+{c} \\ $$
Answered by BaliramKumar last updated on 15/Sep/22
∫(dx/((x+1)(√(x^2 +2x)))) = ∫(dx/((x+1)(√((x+1)^2 −1))))   let   (x+1) = secθ,     θ = sec^(−1) (x+1)          dx = secθ∙tanθ∙dθ  ∫((secθ∙tanθ∙dθ)/(secθ(√(sec^2 θ − 1)))) = ∫((secθ∙tanθ∙dθ)/(secθ∙tanθ)) =   ∫1dθ = θ + C     =  sec^(−1) (x + 1) + C     ∫(dx/((x+1)(√(x^2 +2x)))) = tan^(−1) ((√(x^2 +2x))) + C  both are right
$$\int\frac{{dx}}{\left({x}+\mathrm{1}\right)\sqrt{{x}^{\mathrm{2}} +\mathrm{2}{x}}}\:=\:\int\frac{{dx}}{\left({x}+\mathrm{1}\right)\sqrt{\left({x}+\mathrm{1}\right)^{\mathrm{2}} −\mathrm{1}}}\: \\ $$$${let}\:\:\:\left({x}+\mathrm{1}\right)\:=\:{sec}\theta,\:\:\:\:\:\theta\:=\:{sec}^{−\mathrm{1}} \left({x}+\mathrm{1}\right) \\ $$$$\:\:\:\:\:\:\:\:{dx}\:=\:{sec}\theta\centerdot{tan}\theta\centerdot{d}\theta \\ $$$$\int\frac{{sec}\theta\centerdot{tan}\theta\centerdot{d}\theta}{{sec}\theta\sqrt{{sec}^{\mathrm{2}} \theta\:−\:\mathrm{1}}}\:=\:\int\frac{{sec}\theta\centerdot{tan}\theta\centerdot{d}\theta}{{sec}\theta\centerdot{tan}\theta}\:=\: \\ $$$$\int\mathrm{1}{d}\theta\:=\:\theta\:+\:{C} \\ $$$$\:\:\:=\:\:{sec}^{−\mathrm{1}} \left({x}\:+\:\mathrm{1}\right)\:+\:\mathrm{C}\: \\ $$$$ \\ $$$$\int\frac{{dx}}{\left({x}+\mathrm{1}\right)\sqrt{{x}^{\mathrm{2}} +\mathrm{2}{x}}}\:=\:{tan}^{−\mathrm{1}} \left(\sqrt{{x}^{\mathrm{2}} +\mathrm{2}{x}}\right)\:+\:{C} \\ $$$${both}\:{are}\:{right} \\ $$
Answered by BaliramKumar last updated on 14/Sep/22
  ∫(1/((x+1)(√(x^2 +2x))))dx  let     (√(x^2 +2x)) = y,     x^2 +2x = y^2   (1/( 2(√(x^2 +2x))))(2x+2)dx = dy  (dx/( (√(x^2 +2x)))) = (dy/((x+1)))  ∫(1/((x+1)(√(x^2 +2x))))dx = ∫(1/((x+1)))∙(dy/((x+1)))   ∫(dy/((x+1)^2 )) = ∫(dy/((x^2 +2x+1)))   = ∫(dy/(y^2 +1)) = tan^(−1) (y) + C  = tan^(−1) ((√(x^2 +2x))) + C
$$ \\ $$$$\int\frac{\mathrm{1}}{\left({x}+\mathrm{1}\right)\sqrt{{x}^{\mathrm{2}} +\mathrm{2}{x}}}{dx} \\ $$$${let}\:\:\:\:\:\sqrt{{x}^{\mathrm{2}} +\mathrm{2}{x}}\:=\:{y},\:\:\:\:\:{x}^{\mathrm{2}} +\mathrm{2}{x}\:=\:{y}^{\mathrm{2}} \\ $$$$\frac{\mathrm{1}}{\:\mathrm{2}\sqrt{{x}^{\mathrm{2}} +\mathrm{2}{x}}}\left(\mathrm{2}{x}+\mathrm{2}\right){dx}\:=\:{dy} \\ $$$$\frac{{dx}}{\:\sqrt{{x}^{\mathrm{2}} +\mathrm{2}{x}}}\:=\:\frac{{dy}}{\left({x}+\mathrm{1}\right)} \\ $$$$\int\frac{\mathrm{1}}{\left({x}+\mathrm{1}\right)\sqrt{{x}^{\mathrm{2}} +\mathrm{2}{x}}}{dx}\:=\:\int\frac{\mathrm{1}}{\left({x}+\mathrm{1}\right)}\centerdot\frac{{dy}}{\left({x}+\mathrm{1}\right)}\: \\ $$$$\int\frac{{dy}}{\left({x}+\mathrm{1}\right)^{\mathrm{2}} }\:=\:\int\frac{{dy}}{\left({x}^{\mathrm{2}} +\mathrm{2}{x}+\mathrm{1}\right)}\: \\ $$$$=\:\int\frac{{dy}}{{y}^{\mathrm{2}} +\mathrm{1}}\:=\:{tan}^{−\mathrm{1}} \left({y}\right)\:+\:\mathrm{C} \\ $$$$=\:{tan}^{−\mathrm{1}} \left(\sqrt{{x}^{\mathrm{2}} +\mathrm{2}{x}}\right)\:+\:{C} \\ $$
Commented by gloriousman last updated on 15/Sep/22
  Many Thanks..Sir
$$ \\ $$$$\mathrm{Many}\:\mathrm{Thanks}..\mathrm{Sir} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *