Question Number 86302 by john santu last updated on 28/Mar/20
$$\int\:\frac{{dx}}{\left({x}^{\mathrm{2}} +\mathrm{1}\right)\sqrt{{x}^{\mathrm{2}} +\mathrm{4}}}\:=? \\ $$
Commented by abdomathmax last updated on 28/Mar/20
$${I}\:=\int\:\:\:\frac{{dx}}{\left({x}^{\mathrm{2}} \:+\mathrm{1}\right)\sqrt{{x}^{\mathrm{2}} \:+\mathrm{4}}}\:{changement}\:{x}\:=\mathrm{2}{sh}\left({t}\right)\:{give} \\ $$$${I}\:=\int\:\:\frac{\mathrm{2}{ch}\left({t}\right)\:{dt}}{\left(\mathrm{1}+\mathrm{4}{sh}^{\mathrm{2}} {t}\right)\mathrm{2}{ch}\left({t}\right)}\:=\int\:\:\:\frac{{dt}}{\mathrm{1}+\mathrm{4}×\frac{{ch}\left(\mathrm{2}{t}\right)−\mathrm{1}}{\mathrm{2}}} \\ $$$$=\int\:\:\:\:\frac{\mathrm{2}{dt}}{\mathrm{2}+\mathrm{4}{ch}\left(\mathrm{2}{t}\right)−\mathrm{4}}\:=\int\:\:\:\frac{{dt}}{\mathrm{2}{ch}\left(\mathrm{2}{t}\right)−\mathrm{1}} \\ $$$$=\int\:\:\frac{{dt}}{\mathrm{2}×\frac{{e}^{\mathrm{2}{t}} +{e}^{−\mathrm{2}{t}} }{\mathrm{2}}−\mathrm{1}}\:=\int\:\:\:\frac{{dt}}{{e}^{\mathrm{2}{t}} \:+{e}^{−\mathrm{2}{t}} −\mathrm{1}} \\ $$$$=_{{e}^{{t}} ={z}} \:\:\:\int\:\:\:\:\:\:\frac{{dz}}{{z}\left({z}^{\mathrm{2}} \:+{z}^{−\mathrm{2}} −\mathrm{1}\right)}\:=\int\:\:\:\frac{{dz}}{{z}^{\mathrm{3}} −{z}^{−\mathrm{1}} −{z}} \\ $$$$=\int\:\:\frac{{zdz}}{{z}^{\mathrm{4}} −\mathrm{1}−{z}^{\mathrm{2}} }\:=\int\:\:\:\frac{{zdz}}{{z}^{\mathrm{4}} −{z}^{\mathrm{2}} −\mathrm{1}}\:{let}\:{decompose} \\ $$$${F}\left({z}\right)=\frac{{z}}{{z}^{\mathrm{4}} −{z}^{\mathrm{2}} −\mathrm{1}} \\ $$$${z}^{\mathrm{4}} −{z}^{\mathrm{2}} −\mathrm{1}\:=\mathrm{0}\Rightarrow{t}^{\mathrm{2}} −{t}−\mathrm{1}=\mathrm{0}\:\:\left({t}={z}^{\mathrm{2}} \right) \\ $$$$\Delta=\mathrm{1}+\mathrm{4}\:=\mathrm{5}\:\Rightarrow{t}_{\mathrm{1}} =\mathrm{1}+\sqrt{\mathrm{5}}\:{and}\:{t}_{\mathrm{2}} =\mathrm{1}−\sqrt{\mathrm{5}} \\ $$$$\Rightarrow{F}\left({z}\right)\:=\frac{{z}}{\left({z}^{\mathrm{2}} −{t}_{\mathrm{1}} \right)\left({z}^{\mathrm{2}} −{t}_{\mathrm{2}} \right)}\:=\frac{{z}}{\mathrm{2}\sqrt{\mathrm{5}}}\left(\frac{\mathrm{1}}{{z}^{\mathrm{2}} −{t}_{\mathrm{1}} }−\frac{\mathrm{1}}{{z}^{\mathrm{2}} −{t}_{\mathrm{2}} }\right) \\ $$$$\Rightarrow\int\:{F}\left({z}\right){dz}\:=\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{5}}}{ln}\left(\frac{{z}^{\mathrm{2}} −{t}_{\mathrm{1}} }{{z}^{\mathrm{2}} −{t}_{\mathrm{2}} }\right)\:+{C} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{5}}}{ln}\left(\frac{{e}^{\mathrm{2}{t}} −{t}_{\mathrm{1}} }{{e}^{\mathrm{2}{t}} −{t}_{\mathrm{2}} }\right)+{C} \\ $$$${t}={argsh}\left(\frac{{x}}{\mathrm{2}}\right)\:={ln}\left(\frac{{x}}{\mathrm{2}}+\sqrt{\mathrm{1}+\frac{{x}^{\mathrm{2}} }{\mathrm{4}}}\right)\:\Rightarrow \\ $$$${e}^{\mathrm{2}{t}} \:=\left(\frac{{x}}{\mathrm{2}}+\sqrt{\mathrm{1}+\frac{{x}^{\mathrm{2}} }{\mathrm{4}}}\right)^{\mathrm{2}} \:\Rightarrow \\ $$$${I}\:=\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{5}}}{ln}\left(\frac{\left(\frac{{x}}{\mathrm{2}}+\sqrt{\mathrm{1}+\frac{{x}^{\mathrm{2}} }{\mathrm{2}}}\right)^{\mathrm{2}} −\mathrm{1}−\sqrt{\mathrm{5}}}{\left(\frac{{x}}{\mathrm{2}}+\sqrt{\mathrm{1}+\frac{{x}^{\mathrm{2}} }{\mathrm{4}}}\right)^{\mathrm{2}} −\mathrm{1}+\sqrt{\mathrm{5}}}\right)\:+{C} \\ $$
Answered by TANMAY PANACEA. last updated on 28/Mar/20
$${x}=\frac{\mathrm{1}}{{t}}\rightarrow{dx}=\frac{−{dt}}{{t}^{\mathrm{2}} } \\ $$$$\int\frac{−{dt}}{{t}^{\mathrm{2}} \left(\frac{\mathrm{1}}{{t}^{\mathrm{2}} }+\mathrm{1}\right)\sqrt{\frac{\mathrm{1}}{{t}^{\mathrm{2}} }+\mathrm{4}}} \\ $$$$\int\frac{−{tdt}}{\left(\mathrm{1}+{t}^{\mathrm{2}} \right)\sqrt{\mathrm{1}+\mathrm{4}{t}^{\mathrm{2}} }} \\ $$$${t}^{\mathrm{2}} ={k}\rightarrow{dk}=\mathrm{2}{tdt} \\ $$$$\int\frac{−{dk}}{\mathrm{2}\left(\mathrm{1}+{k}\right)\sqrt{\mathrm{1}+\mathrm{4}{k}}} \\ $$$$\frac{−\mathrm{1}}{\mathrm{2}}\int\frac{{dk}}{\left(\mathrm{1}+{k}\right)\sqrt{\mathrm{1}+\mathrm{4}{k}}} \\ $$$$\mathrm{1}+\mathrm{4}{k}={p}^{\mathrm{2}} \\ $$$$\mathrm{4}{dk}=\mathrm{2}{pdp} \\ $$$$\frac{−\mathrm{1}}{\mathrm{2}}\int\frac{{pdp}}{\mathrm{2}×\left(\mathrm{1}+\frac{{p}^{\mathrm{2}} −\mathrm{1}}{\mathrm{4}}\right){p}} \\ $$$$=\frac{−\mathrm{1}}{\mathrm{4}}\int\frac{\mathrm{4}{dp}}{\left({p}^{\mathrm{2}} +\mathrm{3}\right)}=\frac{−\mathrm{1}}{\:\sqrt{\mathrm{3}}}{tan}^{−\mathrm{1}} \left(\frac{{p}}{\:\sqrt{\mathrm{3}}}\right)+{c} \\ $$$$=\frac{−\mathrm{1}}{\:\sqrt{\mathrm{3}}}{tan}^{−\mathrm{1}} \left(\frac{\sqrt{\mathrm{1}+\mathrm{4}{k}}}{\:\sqrt{\mathrm{3}}}\right)+{c} \\ $$$$=\frac{−\mathrm{1}}{\:\sqrt{\mathrm{3}}}{tan}^{−\mathrm{1}} \left(\frac{\sqrt{\mathrm{1}+\mathrm{4}{t}^{\mathrm{2}} }}{\:\sqrt{\mathrm{3}}}\right)+{c} \\ $$$$=\frac{−\mathrm{1}}{\:\sqrt{\mathrm{3}}}{tan}^{−\mathrm{1}} \left(\frac{\sqrt{\mathrm{1}+\frac{\mathrm{4}}{{x}^{\mathrm{2}} }}}{\:\sqrt{\mathrm{3}}}\right)+{c} \\ $$