Question Number 119970 by bramlexs22 last updated on 28/Oct/20
$$\:\int\:\frac{{dx}}{{x}^{\mathrm{2}} \sqrt{\mathrm{25}−{x}^{\mathrm{2}} }}\:? \\ $$
Answered by bemath last updated on 28/Oct/20
$$\:\int\:\frac{{dx}}{{x}^{\mathrm{3}} \sqrt{\frac{\mathrm{25}}{{x}^{\mathrm{2}} }−\mathrm{1}}}\:{dx}\:=\:\int\:\frac{{x}^{−\mathrm{3}} }{\:\sqrt{\mathrm{25}{x}^{−\mathrm{2}} −\mathrm{1}}}\:{dx} \\ $$$${letting}\:{m}\:=\:\mathrm{25}{x}^{−\mathrm{2}} −\mathrm{1}\Rightarrow{dm}\:=\:−\mathrm{50}{x}^{−\mathrm{3}} {dx} \\ $$$$\int\:\frac{−\frac{{dm}}{\mathrm{50}}}{\:\sqrt{{m}}}\:=\:−\frac{\mathrm{1}}{\mathrm{50}}\int\:{m}^{−\frac{\mathrm{1}}{\mathrm{2}}} {dm} \\ $$$$=\:−\frac{\mathrm{1}}{\mathrm{25}}\sqrt{{m}}\:+\:{c}\:=\:−\frac{\mathrm{1}}{\mathrm{25}}\sqrt{\mathrm{25}{x}^{−\mathrm{2}} −\mathrm{1}}+{c} \\ $$$$=−\frac{\sqrt{\mathrm{25}−{x}^{\mathrm{2}} }}{\mathrm{25}{x}}\:+\:{c}\: \\ $$
Answered by Dwaipayan Shikari last updated on 28/Oct/20
$$\int\frac{{dx}}{\mathrm{25}{sin}^{\mathrm{2}} \theta\sqrt{\mathrm{25}−\mathrm{25}{sin}^{\mathrm{2}} \theta}}\:\:\:\:\:\:\:\:\:\:{x}=\mathrm{5}{sin}\theta\Rightarrow\mathrm{1}=\mathrm{5}{cos}\theta\frac{{d}\theta}{{dx}} \\ $$$$=\int\frac{\mathrm{5}{cos}\theta{d}\theta}{\mathrm{25}{sin}^{\mathrm{2}} \theta.\mathrm{5}{cos}\theta} \\ $$$$=\frac{\mathrm{1}}{\mathrm{25}}\int\frac{\mathrm{1}}{{sin}^{\mathrm{2}} \theta} \\ $$$$=−\frac{\mathrm{1}}{\mathrm{25}}\left({tan}\theta\right)^{−\mathrm{1}} =−\frac{\mathrm{1}}{\mathrm{25}}\left(.\frac{{sin}\theta}{\:\sqrt{\mathrm{1}−{sin}^{\mathrm{2}} \theta}}\right)^{−\mathrm{1}} =−\frac{\mathrm{1}}{\mathrm{25}}\left(.\frac{\mathrm{5}{x}}{\mathrm{5}\sqrt{\mathrm{25}−{x}^{\mathrm{2}} }}\right)^{−\mathrm{1}} =−\frac{\mathrm{1}}{\mathrm{25}}.\left(\frac{{x}}{\:\sqrt{\mathrm{25}−{x}^{\mathrm{2}} }}\right)^{−\mathrm{1}} +{C} \\ $$$$=−\frac{\mathrm{1}}{\mathrm{25}}\left(\frac{\sqrt{\mathrm{25}−{x}^{\mathrm{2}} }}{{x}}\right)+{C} \\ $$
Commented by bemath last updated on 28/Oct/20
$$\mathrm{cot}\:\theta\:=\:\frac{\mathrm{cos}\:\theta}{\:\sqrt{\mathrm{1}−\mathrm{cos}\:^{\mathrm{2}} \theta}} \\ $$
Commented by Dwaipayan Shikari last updated on 28/Oct/20
$${I}\:{suppose}\:{it}\:{as}\:{tan}\theta\:\:\:{typo} \\ $$$${Thanking}\:{for}\:{correction} \\ $$
Answered by Bird last updated on 28/Oct/20
$${I}\:=\int\:{x}^{−\mathrm{2}} \left(\mathrm{25}−{x}^{\mathrm{2}} \right)^{−\frac{\mathrm{1}}{\mathrm{2}}} {dx}\:{by}\:{parts} \\ $$$${I}\:=−\frac{\mathrm{1}}{{x}}\left(\mathrm{25}−{x}^{\mathrm{2}} \right)^{−\frac{\mathrm{1}}{\mathrm{2}}} −\int−\frac{\mathrm{1}}{{x}}\left(−\frac{\mathrm{1}}{\mathrm{2}}\right)\left(−\mathrm{2}{x}\right)\left(\mathrm{25}−{x}^{\mathrm{2}} \right)^{−\frac{\mathrm{3}}{\mathrm{2}}} \\ $$$$=−\frac{\mathrm{1}}{{x}\sqrt{\mathrm{25}−{x}^{\mathrm{2}} }}+\int\:\:\frac{{dx}}{\left(\mathrm{25}−{x}^{\mathrm{2}} \right)\sqrt{\mathrm{25}−{x}^{\mathrm{2}} }} \\ $$$$\int\:\:\:\frac{{dx}}{\left(\mathrm{25}−{x}^{\mathrm{2}} \right)\sqrt{\mathrm{25}−{x}^{\mathrm{2}} }}=_{{x}=\mathrm{5}{sint}} \\ $$$$=\int\:\:\:\frac{\mathrm{5}{cost}\:{dt}}{\mathrm{25}\:{cos}^{\mathrm{2}} {t}\:.\mathrm{5}.{cost}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{25}}\int\:\:\frac{{dt}}{\frac{\mathrm{1}+{cos}\left(\mathrm{2}{t}\right)}{\mathrm{2}}}\:=\frac{\mathrm{2}}{\mathrm{25}}\int\:\:\frac{{dt}}{\mathrm{1}+{cos}\left(\mathrm{2}{t}\right)} \\ $$$$=_{{tant}\:={u}} \:\:\:\:\frac{\mathrm{2}}{\mathrm{25}}\int\:\:\frac{{du}}{\left(\mathrm{1}+{u}^{\mathrm{2}} \right)\left(\mathrm{1}+\frac{\mathrm{1}−{u}^{\mathrm{2}} }{\mathrm{1}+{u}^{\mathrm{2}} }\right)} \\ $$$$=\frac{\mathrm{2}}{\mathrm{25}}\int\:\:\frac{{du}}{\mathrm{1}+{u}^{\mathrm{2}} +\mathrm{1}−{u}^{\mathrm{2}} }\:=\frac{\mathrm{1}}{\mathrm{25}}\int\:{du} \\ $$$$=\frac{{u}}{\mathrm{25}}+{c}\:={tan}\left(\:{arcsin}\left(\frac{{x}}{\mathrm{5}}\right)\right)+{c}\:\Rightarrow \\ $$$${I}\:=−\frac{\mathrm{1}}{{x}\sqrt{\mathrm{25}−{x}^{\mathrm{2}} }}\:+{tan}\left({arcsin}\left(\frac{{x}}{\mathrm{5}}\right)+{C}\right. \\ $$
Commented by Bird last updated on 28/Oct/20
$${I}\:=−\frac{\mathrm{1}}{{x}\sqrt{\mathrm{25}−{x}^{\mathrm{2}} }}\:+\frac{\mathrm{1}}{\mathrm{25}}{arctan}\left({arcsin}\left(\frac{{x}}{\mathrm{5}}\right)\right)\:+{C} \\ $$