Menu Close

dx-x-2-25-x-2-




Question Number 119970 by bramlexs22 last updated on 28/Oct/20
 ∫ (dx/(x^2 (√(25−x^2 )))) ?
dxx225x2?
Answered by bemath last updated on 28/Oct/20
 ∫ (dx/(x^3 (√(((25)/x^2 )−1)))) dx = ∫ (x^(−3) /( (√(25x^(−2) −1)))) dx  letting m = 25x^(−2) −1⇒dm = −50x^(−3) dx  ∫ ((−(dm/(50)))/( (√m))) = −(1/(50))∫ m^(−(1/2)) dm  = −(1/(25))(√m) + c = −(1/(25))(√(25x^(−2) −1))+c  =−((√(25−x^2 ))/(25x)) + c
dxx325x21dx=x325x21dxlettingm=25x21dm=50x3dxdm50m=150m12dm=125m+c=12525x21+c=25x225x+c
Answered by Dwaipayan Shikari last updated on 28/Oct/20
∫(dx/(25sin^2 θ(√(25−25sin^2 θ))))          x=5sinθ⇒1=5cosθ(dθ/dx)  =∫((5cosθdθ)/(25sin^2 θ.5cosθ))  =(1/(25))∫(1/(sin^2 θ))  =−(1/(25))(tanθ)^(−1) =−(1/(25))(.((sinθ)/( (√(1−sin^2 θ)))))^(−1) =−(1/(25))(.((5x)/(5(√(25−x^2 )))))^(−1) =−(1/(25)).((x/( (√(25−x^2 )))))^(−1) +C  =−(1/(25))(((√(25−x^2 ))/x))+C
dx25sin2θ2525sin2θx=5sinθ1=5cosθdθdx=5cosθdθ25sin2θ.5cosθ=1251sin2θ=125(tanθ)1=125(.sinθ1sin2θ)1=125(.5x525x2)1=125.(x25x2)1+C=125(25x2x)+C
Commented by bemath last updated on 28/Oct/20
cot θ = ((cos θ)/( (√(1−cos^2 θ))))
cotθ=cosθ1cos2θ
Commented by Dwaipayan Shikari last updated on 28/Oct/20
I suppose it as tanθ   typo  Thanking for correction
IsupposeitastanθtypoThankingforcorrection
Answered by Bird last updated on 28/Oct/20
I =∫ x^(−2) (25−x^2 )^(−(1/2)) dx by parts  I =−(1/x)(25−x^2 )^(−(1/2)) −∫−(1/x)(−(1/2))(−2x)(25−x^2 )^(−(3/2))   =−(1/(x(√(25−x^2 ))))+∫  (dx/((25−x^2 )(√(25−x^2 ))))  ∫   (dx/((25−x^2 )(√(25−x^2 ))))=_(x=5sint)   =∫   ((5cost dt)/(25 cos^2 t .5.cost))  =(1/(25))∫  (dt/((1+cos(2t))/2)) =(2/(25))∫  (dt/(1+cos(2t)))  =_(tant =u)     (2/(25))∫  (du/((1+u^2 )(1+((1−u^2 )/(1+u^2 )))))  =(2/(25))∫  (du/(1+u^2 +1−u^2 )) =(1/(25))∫ du  =(u/(25))+c =tan( arcsin((x/5)))+c ⇒  I =−(1/(x(√(25−x^2 )))) +tan(arcsin((x/5))+C
I=x2(25x2)12dxbypartsI=1x(25x2)121x(12)(2x)(25x2)32=1x25x2+dx(25x2)25x2dx(25x2)25x2=x=5sint=5costdt25cos2t.5.cost=125dt1+cos(2t)2=225dt1+cos(2t)=tant=u225du(1+u2)(1+1u21+u2)=225du1+u2+1u2=125du=u25+c=tan(arcsin(x5))+cI=1x25x2+tan(arcsin(x5)+C
Commented by Bird last updated on 28/Oct/20
I =−(1/(x(√(25−x^2 )))) +(1/(25))arctan(arcsin((x/5))) +C
I=1x25x2+125arctan(arcsin(x5))+C

Leave a Reply

Your email address will not be published. Required fields are marked *