Menu Close

dx-x-2-5-2-




Question Number 190740 by mathlove last updated on 10/Apr/23
∫(dx/((x^2 +5)^2 ))=?
$$\int\frac{{dx}}{\left({x}^{\mathrm{2}} +\mathrm{5}\right)^{\mathrm{2}} }=? \\ $$
Answered by gatocomcirrose last updated on 10/Apr/23
x=(√5)tgθ⇒dx=(√5)sec^2 θdθ  ∫(((√5)sec^2 θ)/(25sec^4 θ))dθ=((√5)/(25))∫cos^2 θdθ  =((√5)/(50))∫cos(2θ)+1dθ=((√5)/(100))sin(2θ)+θ  =(x/(10(x^2 +5)))+arctan((x/( (√5))))+C
$$\mathrm{x}=\sqrt{\mathrm{5}}\mathrm{tg}\theta\Rightarrow\mathrm{dx}=\sqrt{\mathrm{5}}\mathrm{sec}^{\mathrm{2}} \theta\mathrm{d}\theta \\ $$$$\int\frac{\sqrt{\mathrm{5}}\mathrm{sec}^{\mathrm{2}} \theta}{\mathrm{25sec}^{\mathrm{4}} \theta}\mathrm{d}\theta=\frac{\sqrt{\mathrm{5}}}{\mathrm{25}}\int\mathrm{cos}^{\mathrm{2}} \theta\mathrm{d}\theta \\ $$$$=\frac{\sqrt{\mathrm{5}}}{\mathrm{50}}\int\mathrm{cos}\left(\mathrm{2}\theta\right)+\mathrm{1d}\theta=\frac{\sqrt{\mathrm{5}}}{\mathrm{100}}\mathrm{sin}\left(\mathrm{2}\theta\right)+\theta \\ $$$$=\frac{\mathrm{x}}{\mathrm{10}\left(\mathrm{x}^{\mathrm{2}} +\mathrm{5}\right)}+\mathrm{arctan}\left(\frac{\mathrm{x}}{\:\sqrt{\mathrm{5}}}\right)+\mathrm{C} \\ $$
Commented by mehdee42 last updated on 10/Apr/23
very good  decreasing order   if   I_n =∫ (dx/((x^2 +a)^n ))⇒I_(n+1)  = (x/(2na(x^2 +a)^n ))+((2n−1)/(2na)) I_n
$${very}\:{good} \\ $$$${decreasing}\:{order} \\ $$$$\:{if}\:\:\:{I}_{{n}} =\int\:\frac{{dx}}{\left({x}^{\mathrm{2}} +{a}\right)^{{n}} }\Rightarrow{I}_{{n}+\mathrm{1}} \:=\:\frac{{x}}{\mathrm{2}{na}\left({x}^{\mathrm{2}} +{a}\right)^{{n}} }+\frac{\mathrm{2}{n}−\mathrm{1}}{\mathrm{2}{na}}\:{I}_{{n}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *