Question Number 148000 by vvvv last updated on 25/Jul/21
$$\underset{−\infty} {\overset{+\infty} {\int}}\frac{\boldsymbol{{dx}}}{\left(\boldsymbol{{x}}^{\mathrm{2}} +\boldsymbol{{k}}^{\mathrm{2}} \right)^{\frac{\mathrm{3}}{\mathrm{2}}} } \\ $$
Answered by gsk2684 last updated on 25/Jul/21
$$\mathrm{2}\underset{{x}=\mathrm{0}} {\overset{\infty} {\int}}\frac{{dx}}{{x}^{\mathrm{3}} \left(\mathrm{1}+\frac{{k}^{\mathrm{2}} }{{x}^{\mathrm{2}} }\right)^{\frac{\mathrm{3}}{\mathrm{2}}} }\: \\ $$$${changement}\:\mathrm{1}+\frac{{k}^{\mathrm{2}} }{{x}^{\mathrm{2}} }={t}\:\Rightarrow\:−\frac{\mathrm{2}{k}^{\mathrm{2}} }{{x}^{\mathrm{3}} }{dx}={dt} \\ $$$$\mathrm{2}\underset{{t}=\infty} {\overset{\mathrm{1}} {\int}}{t}^{−\frac{\mathrm{3}}{\mathrm{2}}} \:\frac{{dt}}{−\mathrm{2}{k}^{\mathrm{2}} }=\frac{−\mathrm{1}}{{k}^{\mathrm{2}} }\left[\frac{{t}^{\frac{−\mathrm{3}}{\mathrm{2}}+\mathrm{1}} }{−\frac{\mathrm{3}}{\mathrm{2}}+\mathrm{1}}\right]_{\infty} ^{\mathrm{1}} \\ $$$$=\frac{−\mathrm{1}}{{k}^{\mathrm{2}} }\left[\frac{{t}^{−\frac{\mathrm{1}}{\mathrm{2}}} }{−\frac{\mathrm{1}}{\mathrm{2}}}\right]_{\infty} ^{\mathrm{1}} =\frac{\mathrm{2}}{{k}^{\mathrm{2}} }\left[\frac{\mathrm{1}}{\:\sqrt{{t}}}\right]_{\infty} ^{\mathrm{1}} =\frac{\mathrm{2}}{{k}^{\mathrm{2}} }\left[\mathrm{1}−\mathrm{0}\right]=\frac{\mathrm{2}}{{k}^{\mathrm{2}} } \\ $$
Answered by mathmax by abdo last updated on 25/Jul/21
$$\mathrm{U}_{\mathrm{k}} =\int_{−\infty} ^{+\infty} \:\frac{\mathrm{dx}}{\left(\mathrm{x}^{\mathrm{2}} \:+\mathrm{k}^{\mathrm{2}} \right)^{\frac{\mathrm{3}}{\mathrm{2}}} }\:\:\mathrm{changement}\:\mathrm{x}=\mathrm{ktan}\theta\:\mathrm{give} \\ $$$$\mathrm{U}_{\mathrm{k}} =\int_{−\frac{\pi}{\mathrm{2}}} ^{\frac{\pi}{\mathrm{2}}} \:\frac{\mathrm{k}\left(\mathrm{1}+\mathrm{tan}^{\mathrm{2}} \theta\right)}{\mathrm{k}^{\mathrm{3}} \left(\mathrm{1}+\mathrm{tan}^{\mathrm{2}} \theta\right)^{\frac{\mathrm{3}}{\mathrm{2}}} }\mathrm{d}\theta\:=\frac{\mathrm{1}}{\mathrm{k}^{\mathrm{2}} }\int_{−\frac{\pi}{\mathrm{2}}} ^{\frac{\pi}{\mathrm{2}}} \:\frac{\mathrm{d}\theta}{\:\sqrt{\mathrm{1}+\mathrm{tan}^{\mathrm{2}} \theta}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{k}^{\mathrm{2}} }\int_{−\frac{\pi}{\mathrm{2}}} ^{\frac{\pi}{\mathrm{2}}} \mathrm{cos}\theta\:\mathrm{d}\theta\:=\frac{\mathrm{1}}{\mathrm{k}^{\mathrm{2}} }\left[\mathrm{sin}\theta\right]_{−\frac{\pi}{\mathrm{2}}} ^{\frac{\pi}{\mathrm{2}}} \:=\frac{\mathrm{1}}{\mathrm{k}^{\mathrm{2}} }\left(\mathrm{1}−\left(−\mathrm{1}\right)\right)\:=\frac{\mathrm{2}}{\mathrm{k}^{\mathrm{2}} }\:\:\:\:\left(\mathrm{k}\neq\mathrm{0}\right) \\ $$