Menu Close

dx-x-2-n-x-2-a-




Question Number 123452 by Eric002 last updated on 25/Nov/20
∫(dx/( (x^2 +n)(√(x^2 +a))))
dx(x2+n)x2+a
Commented by MJS_new last updated on 25/Nov/20
depends on the values of a and n and their  relation...
dependsonthevaluesofaandnandtheirrelation
Answered by TANMAY PANACEA last updated on 25/Nov/20
t^2 =((x^2 +a)/(x^2 +n))  t^2 x^2 +t^2 n=x^2 +a  x^2 (t^2 −1)=a−t^2 n  x^2 =((a−t^2 n)/(t^2 −1))  2xdx=(((t^2 −1)(−2tn)−(a−t^2 n)(2t))/((t^2 −1)^2 ))dt  2xdx=((−2t^3 n+2tn−2at+2t^3 n)/((t^2 −1)^2 ))dt=((2t(n−a))/((t^2 −1)^2 ))dt  xdx=((t(n−a))/((t^2 −1)^2 ))dt  dx=((t(n−a))/((t^2 −1)^2 ))×(1/x)=((t(n−a))/((t^2 −1)^2 ))×((√(t^2 −1))/( (√(a−t^2 n ))))dt  x^2 +n  =((a−t^2 n)/(t^2 −1))+n=((a−t^2 n+nt^2 −n)/(t^2 −1))=((a−n)/(t^2 −1))  x^2 +a=((a−t^2 n)/(t^2 −1))+a=((a−t^2 n+at^2 −a)/(t^2 −1))=((t^2 (a−n))/(t^2 −1))  ∫(dx/((x^2 +n)(√(x^2 +a))))  ∫((t(a−n))/((t^2 −1)^2 ))×(√(t^2 −1)) ×(1/( (√(a−t^2 n))))×((t^2 −1)/(a−n))×(1/( (√((t^2 (a−n))/(t^2 −1)))))×dt  ∫((t(a−n))/((t^2 −1)^2 ))×(t^2 −1)^2 ×(1/( (√(a−t^2 n)) ))×(1/((a−n)^(3/2) ))×(dt/t)  ∫(1/((a−n)^(1/2) ))×(dt/( (√n) ((√((a/n)−t^2 )) )))  (1/((an−n^2 )^(1/2) ))∫(dt/( (√((a/n)−t^2 ))))    (1/((an−n^2 )^(1/2) ))sin^(−1) ((t/( (√(a/n)))))+C  (1/((an−n^2 )^(1/2) ))×sin^(−1) (((√((x^2 +a)/(x^2 +n)))/( (√(a/n)))))+C  pls chk
t2=x2+ax2+nt2x2+t2n=x2+ax2(t21)=at2nx2=at2nt212xdx=(t21)(2tn)(at2n)(2t)(t21)2dt2xdx=2t3n+2tn2at+2t3n(t21)2dt=2t(na)(t21)2dtxdx=t(na)(t21)2dtdx=t(na)(t21)2×1x=t(na)(t21)2×t21at2ndtx2+n=at2nt21+n=at2n+nt2nt21=ant21x2+a=at2nt21+a=at2n+at2at21=t2(an)t21dx(x2+n)x2+at(an)(t21)2×t21×1at2n×t21an×1t2(an)t21×dtt(an)(t21)2×(t21)2×1at2n×1(an)32×dtt1(an)12×dtn(ant2)1(ann2)12dtant21(ann2)12sin1(tan)+C1(ann2)12×sin1(x2+ax2+nan)+Cplschk
Commented by TANMAY PANACEA last updated on 25/Nov/20
pld chk error if sny
pldchkerrorifsny
Commented by MJS_new last updated on 25/Nov/20
what if an−n^2 ≤0 or (a/n)<0?
whatifann20oran<0?
Answered by nueron last updated on 25/Nov/20
Commented by MJS_new last updated on 25/Nov/20
yeah. but for a=−4∧n=3 you would  probably choose a different path...
yeah.butfora=4n=3youwouldprobablychooseadifferentpath
Answered by TANMAY PANACEA last updated on 25/Nov/20
x=(√a) tanθ  dx=(√a) sec^2 θdθ  ∫(((√a) sec^2 θ dθ)/((atan^2 θ+n)(√a) secθ))   ∫(dθ/(cosθ(a((sin^2 θ)/(cos^2 θ))+n)))  ∫((cosθ dθ)/(asin^2 θ+n(1−sin^2 θ)))  ∫((d(sinθ))/(n+(a−n)sin^2 θ))  (1/((a−n)))∫((d(sinθ))/( ((√(n/(a−n)))  )^2 +sin^2 θ))  (1/((a−n)))×((√(a−n))/( (√n)))tan^(−1) (((sinθ)/( (√(n/(a−n))))))+C  (1/( (√n) ×(√(a−n))))×tan^(−1) (((x/( (√(a+x^2 ))))/( (√(n/(a−n))))))+C
x=atanθdx=asec2θdθasec2θdθ(atan2θ+n)asecθdθcosθ(asin2θcos2θ+n)cosθdθasin2θ+n(1sin2θ)d(sinθ)n+(an)sin2θ1(an)d(sinθ)(nan)2+sin2θ1(an)×anntan1(sinθnan)+C1n×an×tan1(xa+x2nan)+C
Answered by Bird last updated on 25/Nov/20
I =∫  (dx/((x^2 +n)(√(x^2 +a))))  a>0 we do the changement  x=(√a)sh(t) ⇒  I=∫  (((√a)ch(t))/( (√a)ch(t)(ash^2 t +n)))dt  =∫   (dt/(ash^2 t +n)) =∫ (dt/(a.((ch(2t)−1)/2)+n))  =∫  ((2dt)/(ach(2t)−a+2n))  =∫  ((2dt)/(a((e^(2t) +e^(−2t) )/2)+2n−a))  =∫ ((4dt)/(a(e^(2t)  +e^(−2t) )+4n−2a))  =_(e^(2t)  =u)     4 ∫   (du/(2u{au+au^(−1) +4n−2a}))  =2 ∫   (du/(au^2 +a+(4n−2a)u))  =2∫  (du/(au^(2 ) +(4n−2a)u+a))  Δ^′  =(2n−a)^2 −a^2   =4n^2 −4na =4n(n−a)  if n<a  ⇒Δ^′ <0 ⇒  au^2  +(4n−2a)u +a  =a{u^2  +2(((2n−a))/a))u +(((2n−a)^2 )/a^2 )  +a−(((2n−a)^2 )/a^2 )}  =a{(u+((2n−a)/a))^2  +((a^3 −(2n−a)^2 )/a^2 )}  in this case we do the changement  u+((2n−a)/a)=(√((a^3 −(2n−a)^2 )/a^2 ))z)  if n>a  Δ^′  >0 ⇒u_1 =((a−2n+2(√(n^2 −na)))/a)  u_2 =((a−2n−2(√(n^2 −na)))/a)  ⇒I =(2/a)∫  (du/((u−u_1 )(u−u_2 )))  =(2/(a(u_1 −u_2 )))∫  ((1/(u−u_1 ))−(1/(u−u_2 )))du  =(2/(a(u_1 −u_2 )))ln∣((u−u_1 )/(u−u_2 ))∣ +c  u=e^(2t)  snd t=argsh((x/( (√a))))   =ln((x/( (√a)))+(√(1+(x^2 /a))))  =ln(((x+(√(a+x^2 )))/( (√a)))) ⇒  u=(((x+(√(a+x^2 )))/( (√a))))^2 ....
I=dx(x2+n)x2+aa>0wedothechangementx=ash(t)I=ach(t)ach(t)(ash2t+n)dt=dtash2t+n=dta.ch(2t)12+n=2dtach(2t)a+2n=2dtae2t+e2t2+2na=4dta(e2t+e2t)+4n2a=e2t=u4du2u{au+au1+4n2a}=2duau2+a+(4n2a)u=2duau2+(4n2a)u+aΔ=(2na)2a2=4n24na=4n(na)ifn<aΔ<0au2+(4n2a)u+a=a{u2+2(2na)a)u+(2na)2a2+a(2na)2a2}=a{(u+2naa)2+a3(2na)2a2}inthiscasewedothechangementu+2naa=a3(2na)2a2z)ifn>aΔ>0u1=a2n+2n2naau2=a2n2n2naaI=2adu(uu1)(uu2)=2a(u1u2)(1uu11uu2)du=2a(u1u2)lnuu1uu2+cu=e2tsndt=argsh(xa)=ln(xa+1+x2a)=ln(x+a+x2a)u=(x+a+x2a)2.
Commented by Bird last updated on 25/Nov/20
if a<0 we do the changement  x=(√(−a))ch(t)
ifa<0wedothechangementx=ach(t)

Leave a Reply

Your email address will not be published. Required fields are marked *