Question Number 123452 by Eric002 last updated on 25/Nov/20
$$\int\frac{{dx}}{\:\left({x}^{\mathrm{2}} +{n}\right)\sqrt{{x}^{\mathrm{2}} +{a}}} \\ $$
Commented by MJS_new last updated on 25/Nov/20
$$\mathrm{depends}\:\mathrm{on}\:\mathrm{the}\:\mathrm{values}\:\mathrm{of}\:{a}\:\mathrm{and}\:{n}\:\mathrm{and}\:\mathrm{their} \\ $$$$\mathrm{relation}… \\ $$
Answered by TANMAY PANACEA last updated on 25/Nov/20
$${t}^{\mathrm{2}} =\frac{{x}^{\mathrm{2}} +{a}}{{x}^{\mathrm{2}} +{n}} \\ $$$${t}^{\mathrm{2}} {x}^{\mathrm{2}} +{t}^{\mathrm{2}} {n}={x}^{\mathrm{2}} +{a} \\ $$$${x}^{\mathrm{2}} \left({t}^{\mathrm{2}} −\mathrm{1}\right)={a}−{t}^{\mathrm{2}} {n} \\ $$$${x}^{\mathrm{2}} =\frac{{a}−{t}^{\mathrm{2}} {n}}{{t}^{\mathrm{2}} −\mathrm{1}} \\ $$$$\mathrm{2}{xdx}=\frac{\left({t}^{\mathrm{2}} −\mathrm{1}\right)\left(−\mathrm{2}{tn}\right)−\left({a}−{t}^{\mathrm{2}} {n}\right)\left(\mathrm{2}{t}\right)}{\left({t}^{\mathrm{2}} −\mathrm{1}\right)^{\mathrm{2}} }{dt} \\ $$$$\mathrm{2}{xdx}=\frac{−\mathrm{2}{t}^{\mathrm{3}} {n}+\mathrm{2}{tn}−\mathrm{2}{at}+\mathrm{2}{t}^{\mathrm{3}} {n}}{\left({t}^{\mathrm{2}} −\mathrm{1}\right)^{\mathrm{2}} }{dt}=\frac{\mathrm{2}{t}\left({n}−{a}\right)}{\left({t}^{\mathrm{2}} −\mathrm{1}\right)^{\mathrm{2}} }{dt} \\ $$$${xdx}=\frac{{t}\left({n}−{a}\right)}{\left({t}^{\mathrm{2}} −\mathrm{1}\right)^{\mathrm{2}} }{dt} \\ $$$${dx}=\frac{{t}\left({n}−{a}\right)}{\left({t}^{\mathrm{2}} −\mathrm{1}\right)^{\mathrm{2}} }×\frac{\mathrm{1}}{{x}}=\frac{{t}\left({n}−{a}\right)}{\left({t}^{\mathrm{2}} −\mathrm{1}\right)^{\mathrm{2}} }×\frac{\sqrt{{t}^{\mathrm{2}} −\mathrm{1}}}{\:\sqrt{{a}−{t}^{\mathrm{2}} {n}\:}}{dt} \\ $$$${x}^{\mathrm{2}} +{n} \\ $$$$=\frac{{a}−{t}^{\mathrm{2}} {n}}{{t}^{\mathrm{2}} −\mathrm{1}}+{n}=\frac{{a}−{t}^{\mathrm{2}} {n}+{nt}^{\mathrm{2}} −{n}}{{t}^{\mathrm{2}} −\mathrm{1}}=\frac{{a}−{n}}{{t}^{\mathrm{2}} −\mathrm{1}} \\ $$$${x}^{\mathrm{2}} +{a}=\frac{{a}−{t}^{\mathrm{2}} {n}}{{t}^{\mathrm{2}} −\mathrm{1}}+{a}=\frac{{a}−{t}^{\mathrm{2}} {n}+{at}^{\mathrm{2}} −{a}}{{t}^{\mathrm{2}} −\mathrm{1}}=\frac{{t}^{\mathrm{2}} \left({a}−{n}\right)}{{t}^{\mathrm{2}} −\mathrm{1}} \\ $$$$\int\frac{{dx}}{\left({x}^{\mathrm{2}} +{n}\right)\sqrt{{x}^{\mathrm{2}} +{a}}} \\ $$$$\int\frac{{t}\left({a}−{n}\right)}{\left({t}^{\mathrm{2}} −\mathrm{1}\right)^{\mathrm{2}} }×\sqrt{{t}^{\mathrm{2}} −\mathrm{1}}\:×\frac{\mathrm{1}}{\:\sqrt{{a}−{t}^{\mathrm{2}} {n}}}×\frac{{t}^{\mathrm{2}} −\mathrm{1}}{{a}−{n}}×\frac{\mathrm{1}}{\:\sqrt{\frac{{t}^{\mathrm{2}} \left({a}−{n}\right)}{{t}^{\mathrm{2}} −\mathrm{1}}}}×{dt} \\ $$$$\int\frac{{t}\left({a}−{n}\right)}{\left({t}^{\mathrm{2}} −\mathrm{1}\right)^{\mathrm{2}} }×\left({t}^{\mathrm{2}} −\mathrm{1}\right)^{\mathrm{2}} ×\frac{\mathrm{1}}{\:\sqrt{{a}−{t}^{\mathrm{2}} {n}}\:}×\frac{\mathrm{1}}{\left({a}−{n}\right)^{\frac{\mathrm{3}}{\mathrm{2}}} }×\frac{{dt}}{{t}} \\ $$$$\int\frac{\mathrm{1}}{\left({a}−{n}\right)^{\frac{\mathrm{1}}{\mathrm{2}}} }×\frac{{dt}}{\:\sqrt{{n}}\:\left(\sqrt{\frac{{a}}{{n}}−{t}^{\mathrm{2}} }\:\right)} \\ $$$$\frac{\mathrm{1}}{\left({an}−{n}^{\mathrm{2}} \right)^{\frac{\mathrm{1}}{\mathrm{2}}} }\int\frac{{dt}}{\:\sqrt{\frac{{a}}{{n}}−{t}^{\mathrm{2}} }} \\ $$$$ \\ $$$$\frac{\mathrm{1}}{\left({an}−{n}^{\mathrm{2}} \right)^{\frac{\mathrm{1}}{\mathrm{2}}} }{sin}^{−\mathrm{1}} \left(\frac{{t}}{\:\sqrt{\frac{{a}}{{n}}}}\right)+{C} \\ $$$$\frac{\mathrm{1}}{\left({an}−{n}^{\mathrm{2}} \right)^{\frac{\mathrm{1}}{\mathrm{2}}} }×{sin}^{−\mathrm{1}} \left(\frac{\sqrt{\frac{{x}^{\mathrm{2}} +{a}}{{x}^{\mathrm{2}} +{n}}}}{\:\sqrt{\frac{{a}}{{n}}}}\right)+{C} \\ $$$${pls}\:{chk} \\ $$
Commented by TANMAY PANACEA last updated on 25/Nov/20
$${pld}\:{chk}\:{error}\:{if}\:{sny} \\ $$
Commented by MJS_new last updated on 25/Nov/20
$$\mathrm{what}\:\mathrm{if}\:{an}−{n}^{\mathrm{2}} \leqslant\mathrm{0}\:\mathrm{or}\:\frac{{a}}{{n}}<\mathrm{0}? \\ $$
Answered by nueron last updated on 25/Nov/20
Commented by MJS_new last updated on 25/Nov/20
$$\mathrm{yeah}.\:\mathrm{but}\:\mathrm{for}\:{a}=−\mathrm{4}\wedge{n}=\mathrm{3}\:\mathrm{you}\:\mathrm{would} \\ $$$$\mathrm{probably}\:\mathrm{choose}\:\mathrm{a}\:\mathrm{different}\:\mathrm{path}… \\ $$
Answered by TANMAY PANACEA last updated on 25/Nov/20
$${x}=\sqrt{{a}}\:{tan}\theta \\ $$$${dx}=\sqrt{{a}}\:{sec}^{\mathrm{2}} \theta{d}\theta \\ $$$$\int\frac{\sqrt{{a}}\:{sec}^{\mathrm{2}} \theta\:{d}\theta}{\left({atan}^{\mathrm{2}} \theta+{n}\right)\sqrt{{a}}\:{sec}\theta}\: \\ $$$$\int\frac{{d}\theta}{{cos}\theta\left({a}\frac{{sin}^{\mathrm{2}} \theta}{{cos}^{\mathrm{2}} \theta}+{n}\right)} \\ $$$$\int\frac{{cos}\theta\:{d}\theta}{{asin}^{\mathrm{2}} \theta+{n}\left(\mathrm{1}−{sin}^{\mathrm{2}} \theta\right)} \\ $$$$\int\frac{{d}\left({sin}\theta\right)}{{n}+\left({a}−{n}\right){sin}^{\mathrm{2}} \theta} \\ $$$$\frac{\mathrm{1}}{\left({a}−{n}\right)}\int\frac{{d}\left({sin}\theta\right)}{\:\left(\sqrt{\frac{{n}}{{a}−{n}}}\:\:\right)^{\mathrm{2}} +{sin}^{\mathrm{2}} \theta} \\ $$$$\frac{\mathrm{1}}{\left({a}−{n}\right)}×\frac{\sqrt{{a}−{n}}}{\:\sqrt{{n}}}{tan}^{−\mathrm{1}} \left(\frac{{sin}\theta}{\:\sqrt{\frac{{n}}{{a}−{n}}}}\right)+{C} \\ $$$$\frac{\mathrm{1}}{\:\sqrt{{n}}\:×\sqrt{{a}−{n}}}×{tan}^{−\mathrm{1}} \left(\frac{\frac{{x}}{\:\sqrt{{a}+{x}^{\mathrm{2}} }}}{\:\sqrt{\frac{{n}}{{a}−{n}}}}\right)+{C} \\ $$$$ \\ $$
Answered by Bird last updated on 25/Nov/20
$${I}\:=\int\:\:\frac{{dx}}{\left({x}^{\mathrm{2}} +{n}\right)\sqrt{{x}^{\mathrm{2}} +{a}}} \\ $$$${a}>\mathrm{0}\:{we}\:{do}\:{the}\:{changement} \\ $$$${x}=\sqrt{{a}}{sh}\left({t}\right)\:\Rightarrow \\ $$$${I}=\int\:\:\frac{\sqrt{{a}}{ch}\left({t}\right)}{\:\sqrt{{a}}{ch}\left({t}\right)\left({ash}^{\mathrm{2}} {t}\:+{n}\right)}{dt} \\ $$$$=\int\:\:\:\frac{{dt}}{{ash}^{\mathrm{2}} {t}\:+{n}}\:=\int\:\frac{{dt}}{{a}.\frac{{ch}\left(\mathrm{2}{t}\right)−\mathrm{1}}{\mathrm{2}}+{n}} \\ $$$$=\int\:\:\frac{\mathrm{2}{dt}}{{ach}\left(\mathrm{2}{t}\right)−{a}+\mathrm{2}{n}} \\ $$$$=\int\:\:\frac{\mathrm{2}{dt}}{{a}\frac{{e}^{\mathrm{2}{t}} +{e}^{−\mathrm{2}{t}} }{\mathrm{2}}+\mathrm{2}{n}−{a}} \\ $$$$=\int\:\frac{\mathrm{4}{dt}}{{a}\left({e}^{\mathrm{2}{t}} \:+{e}^{−\mathrm{2}{t}} \right)+\mathrm{4}{n}−\mathrm{2}{a}} \\ $$$$=_{{e}^{\mathrm{2}{t}} \:={u}} \:\:\:\:\mathrm{4}\:\int\:\:\:\frac{{du}}{\mathrm{2}{u}\left\{{au}+{au}^{−\mathrm{1}} +\mathrm{4}{n}−\mathrm{2}{a}\right\}} \\ $$$$=\mathrm{2}\:\int\:\:\:\frac{{du}}{{au}^{\mathrm{2}} +{a}+\left(\mathrm{4}{n}−\mathrm{2}{a}\right){u}} \\ $$$$=\mathrm{2}\int\:\:\frac{{du}}{{au}^{\mathrm{2}\:} +\left(\mathrm{4}{n}−\mathrm{2}{a}\right){u}+{a}} \\ $$$$\Delta^{'} \:=\left(\mathrm{2}{n}−{a}\right)^{\mathrm{2}} −{a}^{\mathrm{2}} \\ $$$$=\mathrm{4}{n}^{\mathrm{2}} −\mathrm{4}{na}\:=\mathrm{4}{n}\left({n}−{a}\right) \\ $$$${if}\:{n}<{a}\:\:\Rightarrow\Delta^{'} <\mathrm{0}\:\Rightarrow \\ $$$${au}^{\mathrm{2}} \:+\left(\mathrm{4}{n}−\mathrm{2}{a}\right){u}\:+{a} \\ $$$$={a}\left\{{u}^{\mathrm{2}} \:+\mathrm{2}\left(\frac{\left.\mathrm{2}{n}−{a}\right)}{{a}}\right){u}\:+\frac{\left(\mathrm{2}{n}−{a}\right)^{\mathrm{2}} }{{a}^{\mathrm{2}} }\right. \\ $$$$\left.+{a}−\frac{\left(\mathrm{2}{n}−{a}\right)^{\mathrm{2}} }{{a}^{\mathrm{2}} }\right\} \\ $$$$={a}\left\{\left({u}+\frac{\mathrm{2}{n}−{a}}{{a}}\right)^{\mathrm{2}} \:+\frac{{a}^{\mathrm{3}} −\left(\mathrm{2}{n}−{a}\right)^{\mathrm{2}} }{{a}^{\mathrm{2}} }\right\} \\ $$$${in}\:{this}\:{case}\:{we}\:{do}\:{the}\:{changement} \\ $$$$\left.{u}+\frac{\mathrm{2}{n}−{a}}{{a}}=\sqrt{\frac{{a}^{\mathrm{3}} −\left(\mathrm{2}{n}−{a}\right)^{\mathrm{2}} }{{a}^{\mathrm{2}} }}{z}\right) \\ $$$${if}\:{n}>{a}\:\:\Delta^{'} \:>\mathrm{0}\:\Rightarrow{u}_{\mathrm{1}} =\frac{{a}−\mathrm{2}{n}+\mathrm{2}\sqrt{{n}^{\mathrm{2}} −{na}}}{{a}} \\ $$$${u}_{\mathrm{2}} =\frac{{a}−\mathrm{2}{n}−\mathrm{2}\sqrt{{n}^{\mathrm{2}} −{na}}}{{a}} \\ $$$$\Rightarrow{I}\:=\frac{\mathrm{2}}{{a}}\int\:\:\frac{{du}}{\left({u}−{u}_{\mathrm{1}} \right)\left({u}−{u}_{\mathrm{2}} \right)} \\ $$$$=\frac{\mathrm{2}}{{a}\left({u}_{\mathrm{1}} −{u}_{\mathrm{2}} \right)}\int\:\:\left(\frac{\mathrm{1}}{{u}−{u}_{\mathrm{1}} }−\frac{\mathrm{1}}{{u}−{u}_{\mathrm{2}} }\right){du} \\ $$$$=\frac{\mathrm{2}}{{a}\left({u}_{\mathrm{1}} −{u}_{\mathrm{2}} \right)}{ln}\mid\frac{{u}−{u}_{\mathrm{1}} }{{u}−{u}_{\mathrm{2}} }\mid\:+{c} \\ $$$${u}={e}^{\mathrm{2}{t}} \:{snd}\:{t}={argsh}\left(\frac{{x}}{\:\sqrt{{a}}}\right)\: \\ $$$$={ln}\left(\frac{{x}}{\:\sqrt{{a}}}+\sqrt{\mathrm{1}+\frac{{x}^{\mathrm{2}} }{{a}}}\right) \\ $$$$={ln}\left(\frac{{x}+\sqrt{{a}+{x}^{\mathrm{2}} }}{\:\sqrt{{a}}}\right)\:\Rightarrow \\ $$$${u}=\left(\frac{{x}+\sqrt{{a}+{x}^{\mathrm{2}} }}{\:\sqrt{{a}}}\right)^{\mathrm{2}} …. \\ $$
Commented by Bird last updated on 25/Nov/20
$${if}\:{a}<\mathrm{0}\:{we}\:{do}\:{the}\:{changement} \\ $$$${x}=\sqrt{−{a}}{ch}\left({t}\right) \\ $$