Question Number 112249 by MJS_new last updated on 07/Sep/20

Commented by bemath last updated on 07/Sep/20

Answered by ajfour last updated on 07/Sep/20

Commented by MJS_new last updated on 07/Sep/20

Answered by MJS_new last updated on 07/Sep/20
![Mr. Mathdave showed us another path. It works with ∫(dx/((ax^2 +bx+c)(√(dx^2 +ex+f)))) only if a=d∧c=f ∫(dx/((αx^2 +px+β)(√(αx^2 +qx+β))))= =α^(−3/2) ∫(dx/( (x^2 +(p/α)x+(β/α))(√(x^2 +(q/α)x+(β/α)))))= [t=(((√β)−x(√α))/( (√β)+x(√α))) → dx=−((2(√β))/((t+1)^2 (√α)))dt] =2α^(7/4) ∫((t+1)/(((p−2(√(αβ)))t^2 −(p+2(√(αβ))))(√((2(√(αβ))−q)(√β)t^2 +(2(√(αβ))+q)(√β)))))dt= [a=p−2(√(αβ)) b=−(p+2(√(αβ))) c=(2(√(αβ))−q)(√β) d=(2(√(αβ))+q)(√β)] =2α^(7/4) ∫((t+1)/((at^2 +b)(√(ct^2 +d))))dt= =2α^(7/4) (∫(t/((at^2 +b)(√(ct^2 +d))))dt+∫(dt/((at^2 +b)(√(ct^2 +d))))) both are easy to solve: ∫(t/((at^2 +b)(√(ct^2 +d))))dt= [u=((√d)/( (√(ct^2 +d)))) → dt=−(((ct^2 +d)^(3/2) )/(ct(√d)))du] =(√d)∫(du/((ad−bc)u^2 −ad))=... ∫(dt/((at^2 +b)(√(ct^2 +d))))= [u=((t(√(ad−bc)))/( (√(ct^2 +d)))) → dt=(((ct^2 +d)^(3/2) )/( d(√(ad−bc))))du] =(1/( (√(ad−bc))))∫(du/(u^2 +b))=...](https://www.tinkutara.com/question/Q112329.png)