Menu Close

dx-x-2-x-1-




Question Number 20238 by tammi last updated on 24/Aug/17
∫(dx/(x^2 −x+1))
$$\int\frac{{dx}}{{x}^{\mathrm{2}} −{x}+\mathrm{1}} \\ $$
Commented by tammi last updated on 24/Aug/17
this answer is(2/( (√3)))tan^(−1) (((2x−1)/( (√3))))+c  i know the answer but can not solve this prblm..help
$${this}\:{answer}\:{is}\frac{\mathrm{2}}{\:\sqrt{\mathrm{3}}}\mathrm{tan}^{−\mathrm{1}} \left(\frac{\mathrm{2}{x}−\mathrm{1}}{\:\sqrt{\mathrm{3}}}\right)+{c} \\ $$$${i}\:{know}\:{the}\:{answer}\:{but}\:{can}\:{not}\:{solve}\:{this}\:{prblm}..{help} \\ $$
Answered by $@ty@m last updated on 25/Aug/17
=∫(dx/(x^2 −2.(1/2)x+((1/2))^2 −((1/2))^2 +1))  =∫(dx/((x−(1/2))^2 +(((√3)/2))^2 ))  =(2/( (√3)))tan^(−1) ((x−(1/2))/((√3)/2))  =(2/( (√3)))tan^(−1) ((2x−1)/( (√3)))+C
$$=\int\frac{{dx}}{{x}^{\mathrm{2}} −\mathrm{2}.\frac{\mathrm{1}}{\mathrm{2}}{x}+\left(\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} −\left(\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} +\mathrm{1}} \\ $$$$=\int\frac{{dx}}{\left({x}−\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} +\left(\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\right)^{\mathrm{2}} } \\ $$$$=\frac{\mathrm{2}}{\:\sqrt{\mathrm{3}}}{tan}^{−\mathrm{1}} \frac{{x}−\frac{\mathrm{1}}{\mathrm{2}}}{\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}} \\ $$$$=\frac{\mathrm{2}}{\:\sqrt{\mathrm{3}}}{tan}^{−\mathrm{1}} \frac{\mathrm{2}{x}−\mathrm{1}}{\:\sqrt{\mathrm{3}}}+{C} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *