dx-x-2-x-2-4- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 116815 by bemath last updated on 07/Oct/20 ∫dx(x−2)(x2+4)=? Answered by john santu last updated on 07/Oct/20 ⇒1(x−2)(x2+4)=Ax−2+Bx+Cx2+4⇒1=A(x2+4)+(x−2)(Bx+C)putx=2⇒1=8A;A=18putx=0⇒1=4.18−2C;2C=−12C=−14putx=1⇒1=58−(B−12)B=58−18=18TheintegralbecomesI=∫18xdx+∫18x−14x2+4dxI=18ln∣x∣+18∫x−2x2+4dxI=18ln∣x∣+116∫d(x2+4)x2+4−14∫dxx2+4I=18ln∣x∣+116ln∣x2+4∣−18tan−1(x2)+c Answered by Dwaipayan Shikari last updated on 07/Oct/20 ∫dx(x−2)(x2+4)=18∫1x−2−x+2x2+4dx=18log(x−2)−18∫xx2+4−14∫1x2+4dx=18log(x−2)−116log(x2+4)−18tan−1x2+C Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: 1-3-1-x-2-x-2-dx-Next Next post: 0-2-0-3-0-4-e-x-y-z-dx-dy-dz- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.