Menu Close

dx-x-2-x-2-4-




Question Number 116815 by bemath last updated on 07/Oct/20
∫ (dx/((x−2)(x^2 +4))) =?
dx(x2)(x2+4)=?
Answered by john santu last updated on 07/Oct/20
⇒ (1/((x−2)(x^2 +4))) = (A/(x−2)) + ((Bx+C)/(x^2 +4))  ⇒1 = A(x^2 +4)+(x−2)(Bx+C)  put x=2⇒1 = 8A; A = (1/8)  put x=0⇒1=4.(1/8)−2C ; 2C=−(1/2)                              C=−(1/4)  put x=1⇒1=(5/8) −(B−(1/2))                   B = (5/8) −(1/8) = (1/8)  The integral becomes   I = ∫ (1/(8x)) dx +∫(((1/8)x−(1/4))/(x^2 +4)) dx  I= (1/8) ln ∣x∣ +(1/8)∫ ((x−2)/(x^2 +4)) dx   I=(1/8)ln ∣x∣+(1/(16))∫ ((d(x^2 +4))/(x^2 +4))−(1/4)∫ (dx/(x^2 +4))  I=(1/8) ln ∣x∣ +(1/(16))ln ∣x^2 +4∣−(1/8) tan^(−1) ((x/2)) + c
1(x2)(x2+4)=Ax2+Bx+Cx2+41=A(x2+4)+(x2)(Bx+C)putx=21=8A;A=18putx=01=4.182C;2C=12C=14putx=11=58(B12)B=5818=18TheintegralbecomesI=18xdx+18x14x2+4dxI=18lnx+18x2x2+4dxI=18lnx+116d(x2+4)x2+414dxx2+4I=18lnx+116lnx2+418tan1(x2)+c
Answered by Dwaipayan Shikari last updated on 07/Oct/20
∫(dx/((x−2)(x^2 +4)))  =(1/8)∫(1/(x−2))−((x+2)/(x^2 +4))dx  =(1/8)log(x−2)−(1/8)∫(x/(x^2 +4))−(1/4)∫(1/(x^2 +4))dx  =(1/8)log(x−2)−(1/(16))log(x^2 +4)−(1/8)tan^(−1) (x/2)+C
dx(x2)(x2+4)=181x2x+2x2+4dx=18log(x2)18xx2+4141x2+4dx=18log(x2)116log(x2+4)18tan1x2+C

Leave a Reply

Your email address will not be published. Required fields are marked *