Menu Close

dx-x-2n-1-x-n-1-




Question Number 129646 by liberty last updated on 17/Jan/21
  ϝ = ∫ (dx/(x^(2n+1) (x^n −1)))
ϝ=dxx2n+1(xn1)
Answered by TheSupreme last updated on 17/Jan/21
x^n =t  x=t^(1/n)   x^(2n+1) =t^(2+(1/n))   dx=(1/n)t^((1/n)−1) dt    ∫(((1/n)t^((1/n)−1) )/(t^(2+(1/n)) (t−1)))=∫(1/n) (1/(t^3 (t−1)))dt  ((At^2 +Bt+C)/t^3 )+(D/(t−1))=(1/D)   { (((t^3 ) A+D=0)),(((t^2 ) B−A=0)),(((t) −B+C=0)),(((1) −C=1)) :}  F=(1/n)∫−((t^2 +t+1)/t^3 )+(1/(t−1)) dt  F=(1/n)∫−(1/t)−(1/t^2 )−(1/t^3 )+(1/(t−1))dt  F=(1/n)[−log(t)+(1/t)+(1/(2t^2 ))+log(t−1)+c]  F=(1/n)log((x^n −1)/x^n ) +(1/x^n )+(1/(2x^(2n) ))+c
xn=tx=t1nx2n+1=t2+1ndx=1nt1n1dt1nt1n1t2+1n(t1)=1n1t3(t1)dtAt2+Bt+Ct3+Dt1=1D{(t3)A+D=0(t2)BA=0(t)B+C=0(1)C=1F=1nt2+t+1t3+1t1dtF=1n1t1t21t3+1t1dtF=1n[log(t)+1t+12t2+log(t1)+c]F=1nlogxn1xn+1xn+12x2n+c
Answered by liberty last updated on 17/Jan/21
 ϝ = −(1/(2n)) ∫ (1/(x^n −1)) d((1/x^(2n) ))    ϝ = −(1/(2n))∫ ((1/x^n )/(1−(1/x^n ))) d((1/x^(2n) ))   let (1/x^n ) = r ⇒r^2  = (1/x^(2n) ) ∧ 2r dr = d((1/x^(2n) ))   ϝ = −(1/(2n))∫ (r/(1−r)) (2r dr )   ϝ = −(1/n)∫ ((1−(1−r^2 ))/(1−r)) dr    ϝ = (1/n) [ ln ∣1−r∣ +∫ (1+r) dr ]    ϝ = (1/n) [ ln ∣1−(1/x^n )∣+(1/x^n )+(1/(2x^(2n) )) ] + C
ϝ=12n1xn1d(1x2n)ϝ=12n1xn11xnd(1x2n)let1xn=rr2=1x2n2rdr=d(1x2n)ϝ=12nr1r(2rdr)ϝ=1n1(1r2)1rdrϝ=1n[ln1r+(1+r)dr]ϝ=1n[ln11xn+1xn+12x2n]+C
Answered by mathmax by abdo last updated on 17/Jan/21
I=∫ (dx/(x^(2n+1) (x^n −1))) changement x=t^(1/n)  give  I=(1/n)∫  (t^((1/n)−1) /(t^((2n+1)/n) (t−1)))dt =(1/n)∫  ((t^((1/n)−1) .t^(−2−(1/n)) )/(t−1))dt  =(1/n)∫  (dt/(t^3 (t−1)))  let decompose F(t)=(1/(t^3 (t−1)))  F(t)=(a/t)+(b/t^2 )+(c/t^3 ) +(d/(t−1))  c=−1 ,d=1 ⇒F(t)=(a/t)+(b/t^2 )−(1/t^3 )+(1/(t−1))  lim_(t→+∞) tF(t)=0=a+1 ⇒a=−1 ⇒F(t)=−(1/t)+(b/t^2 )−(1/t^3 )+(1/(t−1))  F(−1)=(1/2)=1+b+1−(1/2)=b+2−(1/2)=b+(3/2) ⇒b=(1/2)−(3/2)=−1 ⇒  F(t)=−(1/t)−(1/t^2 )−(1/t^3 )+(1/(t−1)) ⇒∫ F(t)dt=−ln∣t∣+(1/t)+(1/(2t^2 ))+ln∣t−1∣ +C  =ln∣((t−1)/t)∣+(1/t)+(1/(2t^2 )) +C =ln∣((x^n −1)/x^n )∣+(1/x^n ) +(1/(2x^(2n) )) +C
I=dxx2n+1(xn1)changementx=t1ngiveI=1nt1n1t2n+1n(t1)dt=1nt1n1.t21nt1dt=1ndtt3(t1)letdecomposeF(t)=1t3(t1)F(t)=at+bt2+ct3+dt1c=1,d=1F(t)=at+bt21t3+1t1limt+tF(t)=0=a+1a=1F(t)=1t+bt21t3+1t1F(1)=12=1+b+112=b+212=b+32b=1232=1F(t)=1t1t21t3+1t1F(t)dt=lnt+1t+12t2+lnt1+C=lnt1t+1t+12t2+C=lnxn1xn+1xn+12x2n+C
Commented by mathmax by abdo last updated on 17/Jan/21
⇒I=(1/n)ln∣((x^n −1)/x^n )∣+(1/(nx^n ))+(1/(2nx^(2n) )) +C
I=1nlnxn1xn+1nxn+12nx2n+C

Leave a Reply

Your email address will not be published. Required fields are marked *