Menu Close

dx-x-3-2019-1-3-




Question Number 183157 by cortano1 last updated on 21/Dec/22
 ∫ (dx/( ((x^3 +2019))^(1/3) )) =?
$$\:\int\:\frac{{dx}}{\:\sqrt[{\mathrm{3}}]{{x}^{\mathrm{3}} +\mathrm{2019}}}\:=? \\ $$
Answered by MJS_new last updated on 21/Dec/22
∫(dx/( ((x^3 +a))^(1/3) ))=       [t=(x/( ((x^3 +a))^(1/3) )) → dx=((((x^3 +a)^4 ))^(1/3) /a)]  =∫(dt/(1−t^3 ))=       [the usual method]  =(1/6)ln (t^2 +t+1) +(1/3)ln (t−1) +((√3)/3)arctan (((√3)(2t+1))/3)  now insert
$$\int\frac{{dx}}{\:\sqrt[{\mathrm{3}}]{{x}^{\mathrm{3}} +{a}}}= \\ $$$$\:\:\:\:\:\left[{t}=\frac{{x}}{\:\sqrt[{\mathrm{3}}]{{x}^{\mathrm{3}} +{a}}}\:\rightarrow\:{dx}=\frac{\sqrt[{\mathrm{3}}]{\left({x}^{\mathrm{3}} +{a}\right)^{\mathrm{4}} }}{{a}}\right] \\ $$$$=\int\frac{{dt}}{\mathrm{1}−{t}^{\mathrm{3}} }= \\ $$$$\:\:\:\:\:\left[\mathrm{the}\:\mathrm{usual}\:\mathrm{method}\right] \\ $$$$=\frac{\mathrm{1}}{\mathrm{6}}\mathrm{ln}\:\left({t}^{\mathrm{2}} +{t}+\mathrm{1}\right)\:+\frac{\mathrm{1}}{\mathrm{3}}\mathrm{ln}\:\left({t}−\mathrm{1}\right)\:+\frac{\sqrt{\mathrm{3}}}{\mathrm{3}}\mathrm{arctan}\:\frac{\sqrt{\mathrm{3}}\left(\mathrm{2}{t}+\mathrm{1}\right)}{\mathrm{3}} \\ $$$$\mathrm{now}\:\mathrm{insert} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *