Question Number 84170 by jagoll last updated on 10/Mar/20
$$\int\:\:\frac{\mathrm{dx}}{\mathrm{x}^{\mathrm{3}} \:\:\sqrt[{\mathrm{3}\:\:}]{\mathrm{4}−\mathrm{x}^{\mathrm{3}} }}\:?\: \\ $$
Answered by john santu last updated on 10/Mar/20
$$\int\:\:\frac{\mathrm{dx}}{\mathrm{x}^{\mathrm{4}} \:\sqrt[{\mathrm{3}\:\:}]{\frac{\mathrm{4}}{\mathrm{x}^{\mathrm{3}} }−\mathrm{1}}}\:=\: \\ $$$$\mathrm{let}\:\mathrm{u}\:=\:\frac{\mathrm{4}}{\mathrm{x}^{\mathrm{3}} }−\mathrm{1}\:\Rightarrow\:\mathrm{du}\:=\:−\frac{\mathrm{12}}{\mathrm{x}^{\mathrm{4}} }\:\mathrm{dx} \\ $$$$\frac{\mathrm{dx}}{\mathrm{x}^{\mathrm{4}} }\:=\:−\frac{\mathrm{1}}{\mathrm{12}}\mathrm{du}. \\ $$$$\Rightarrow\int\:−\frac{{du}}{\mathrm{12}{u}^{\frac{\mathrm{1}}{\mathrm{3}}} }\:\:=\:−\frac{\mathrm{1}}{\mathrm{12}}×\frac{\mathrm{3}}{\mathrm{2}}\sqrt[{\mathrm{3}\:\:}]{{u}^{\mathrm{2}} }\:+\:{c} \\ $$$$=−\frac{\mathrm{1}}{\mathrm{8}}\sqrt[{\mathrm{3}\:\:}]{\left(\frac{\mathrm{4}−{x}^{\mathrm{3}} }{{x}^{\mathrm{3}} }\right)^{\mathrm{2}} }\:+\:{c} \\ $$$$−\frac{\mathrm{1}}{\mathrm{8}{x}^{\mathrm{2}} }\:\sqrt[{\mathrm{3}\:\:}]{\left(\mathrm{4}−{x}^{\mathrm{3}} \right)^{\mathrm{2}} }\:+\:{c} \\ $$
Answered by MJS last updated on 10/Mar/20
$$\int\frac{{dx}}{{x}^{\mathrm{3}} \sqrt[{\mathrm{3}}]{\mathrm{4}−{x}^{\mathrm{3}} }}=−\int\frac{{dx}}{{x}^{\mathrm{3}} \sqrt[{\mathrm{3}}]{{x}^{\mathrm{3}} −\mathrm{4}}}= \\ $$$$\:\:\:\:\:\left[{t}=\frac{\sqrt[{\mathrm{3}}]{{x}^{\mathrm{3}} −\mathrm{4}}}{{x}}\:\rightarrow\:{dx}=\frac{{x}^{\mathrm{2}} \left({x}^{\mathrm{3}} −\mathrm{4}\right)^{\mathrm{2}/\mathrm{3}} }{\mathrm{4}}\right] \\ $$$$=−\frac{\mathrm{1}}{\mathrm{4}}\int{tdt}=−\frac{\mathrm{1}}{\mathrm{8}}{t}^{\mathrm{2}} =−\frac{\left({x}^{\mathrm{3}} −\mathrm{4}\right)^{\mathrm{2}/\mathrm{3}} }{\mathrm{8}{x}^{\mathrm{2}} }+{C} \\ $$
Commented by john santu last updated on 10/Mar/20
$$\mathrm{oo}\:\mathrm{thank}\:\mathrm{you}\:\mathrm{sir} \\ $$
Commented by john santu last updated on 10/Mar/20
$$\mathrm{how}\:\mathrm{to}\:\mathrm{get}\:\mathrm{t}\:=\:\frac{\sqrt[{\mathrm{3}\:\:}]{\mathrm{x}^{\mathrm{3}} −\mathrm{4}}}{\mathrm{x}}\:\mathrm{sir}? \\ $$$$\mathrm{by}\:\mathrm{feeling}? \\ $$
Commented by MJS last updated on 10/Mar/20
$$\mathrm{I}\:\mathrm{tried}\:{t}=\sqrt[{\mathrm{3}}]{{x}^{\mathrm{3}} −\mathrm{4}}\:\rightarrow\:{dx}=\frac{\left({x}^{\mathrm{3}} −\mathrm{4}\right)^{\mathrm{2}/\mathrm{3}} }{\mathrm{3}{x}^{\mathrm{2}} }\:\mathrm{first}\:\mathrm{and} \\ $$$$\mathrm{because}\:\mathrm{of}\:\left(\frac{{u}}{{v}}\right)^{'} =\frac{{u}'{v}−{uv}'}{{v}^{\mathrm{2}} }\:\mathrm{with}\:{u}=\sqrt[{\mathrm{3}}]{{w}}\:\mathrm{is} \\ $$$$\frac{\frac{\mathrm{1}}{\mathrm{3}}{w}^{−\mathrm{2}/\mathrm{3}} {v}−{w}^{\mathrm{1}/\mathrm{3}} {v}'}{{v}^{\mathrm{2}} }=\frac{{v}−{wv}'}{\mathrm{3}{v}^{\mathrm{2}} {w}^{\mathrm{2}/\mathrm{3}} }\:\mathrm{I}\:\mathrm{tried}\:{v}={x} \\ $$$$\mathrm{maybe}\:\mathrm{it}'\mathrm{s}\:\mathrm{just}\:\mathrm{experience}\:\mathrm{mixed}\:\mathrm{with}\:\mathrm{good}\:\mathrm{luck} \\ $$