Menu Close

dx-x-3-4x-




Question Number 161999 by mahdipoor last updated on 25/Dec/21
∫(dx/( (√(x^3 −4x))))
dxx34x
Answered by aleks041103 last updated on 25/Dec/21
∫(dx/( (√(x^3 −4x))))=∫(dx/( (√x))) (1/( (√(x^2 −4))))=  =2∫((d((√x)))/( (√(((√x))^4 −4))))=2∫((d((√x)))/( 2(√((((√x)/( (√2))))^4 −1))))=  =(√2)∫(du/( (√(u^4 −1))))
dxx34x=dxx1x24==2d(x)(x)44=2d(x)2(x2)41==2duu41
Commented by aleks041103 last updated on 25/Dec/21
this integral cannot be solved using elementary functions
thisintegralcannotbesolvedusingelementaryfunctions
Commented by Ar Brandon last updated on 25/Dec/21
=−(√2)i∫(du/( (√(1−u^4 ))))=−(√2)iΣ_(n=0) ^∞ ∫((((1/2))_n )/(n!))u^(4n) du  =−(√2)iΣ_(n=0) ^∞ ((((1/2))_n )/(n!(4n+1)))u^(4n+1) =−(√2)i(u/4)Σ_(n=0) ^∞ ((((1/2))_n )/(n!(n+(1/4))))u^(4n)   =−(√2)i(u/4)Σ_(n=0) ^∞ ((((1/2))_n Γ(n+(1/4)))/(n!Γ(n+(5/4))))u^(4n) =−(√2)iuΣ_(n=0) ^∞ ((((1/2))_n ((1/4))_n )/(n!((5/4))_n ))u^(4n)   =−(√2)iu _2 F_1 ((1/4), (1/2); (5/4); u^(4n) )+C=−(√2)i(√x) _2 F_1 ((1/4), (1/2); (5/4); x^(2n) )
=2idu1u4=2in=0(12)nn!u4ndu=2in=0(12)nn!(4n+1)u4n+1=2iu4n=0(12)nn!(n+14)u4n=2iu4n=0(12)nΓ(n+14)n!Γ(n+54)u4n=2iun=0(12)n(14)nn!(54)nu4n=2iu2F1(14,12;54;u4n)+C=2ix2F1(14,12;54;x2n)
Commented by aleks041103 last updated on 25/Dec/21
Yep! Thanks for finishing the problem
Yep!Thanksforfinishingtheproblem

Leave a Reply

Your email address will not be published. Required fields are marked *