dx-x-3-x-2-x-1- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 121300 by liberty last updated on 06/Nov/20 ∫dxx3+x2+x+1? Commented by liberty last updated on 06/Nov/20 Answered by TANMAY PANACEA last updated on 06/Nov/20 ∫dxx2(x+1)+1(x+1)∫dx(x+1)(x2+1)=∫ax+1dx+∫bx+cx2+1dx1=a(x2+1)+(x+1)(bx+c)1=ax2+a+bx2+cx+bx+c1=x2(a+b)+x(b+c)+(a+c)a+b=0b+c=0a+c=1a+c=1b=−ac−a=0→a=ca=12b=−12c=1212∫dxx+1+12∫−x+1x2+1dx12∫dxx+1−14∫2x−2x2+1dx12∫dxx+1−14∫d(x2+1)x2+1+12∫dxx2+112ln(x+1)−14ln(x2+1)+12tan−1(x)+c Answered by Bird last updated on 06/Nov/20 I=∫dx1+x+x2+x3⇒I=∫dx1−x41−x=∫1−x1−x4dx=∫(1−x)dx(1−x2)(1+x2)=∫dx(x+1)(x2+1)letdecomposeF(x)=1(x+1)(x2+1)F(x)=ax+1+bx+cx2+1a=12,limx→+∞xF(x)=0=a+b⇒b=−12F(o)=1=a+c⇒c=1−12=12⇒F(x)=12(x+1)+−x2+12x2+1=12(x+1)−12x−1x2+1⇒I=12∫dxx+1−14∫2xx2+1dx+12∫dxx2+1=12ln∣x+1∣−14ln(x2+1)+12arctanx+C Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-121301Next Next post: cos-x-3-sin-x-2-cos-2x- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.