Menu Close

dx-x-3-x-2-x-1-




Question Number 121300 by liberty last updated on 06/Nov/20
  ∫ (dx/(x^3 +x^2 +x+1)) ?
dxx3+x2+x+1?
Commented by liberty last updated on 06/Nov/20
Answered by TANMAY PANACEA last updated on 06/Nov/20
∫(dx/(x^2 (x+1)+1(x+1)))  ∫(dx/((x+1)(x^2 +1)))=∫(a/(x+1))dx+∫((bx+c)/(x^2 +1))dx  1=a(x^2 +1)+(x+1)(bx+c)  1=ax^2 +a+bx^2 +cx+bx+c  1=x^2 (a+b)+x(b+c)+(a+c)  a+b=0  b+c=0  a+c=1  a+c=1  b=−a  c−a=0→a=c  a=(1/2)   b=((−1)/2)   c=(1/2)  (1/2)∫(dx/(x+1))+(1/2)∫((−x+1)/(x^2 +1))dx  (1/2)∫(dx/(x+1))−(1/4)∫((2x−2)/(x^2 +1))dx  (1/2)∫(dx/(x+1))−(1/4)∫((d(x^2 +1))/(x^2 +1))+(1/2)∫(dx/(x^2 +1))  (1/2)ln(x+1)−(1/4)ln(x^2 +1)+(1/2)tan^(−1) (x)+c
dxx2(x+1)+1(x+1)dx(x+1)(x2+1)=ax+1dx+bx+cx2+1dx1=a(x2+1)+(x+1)(bx+c)1=ax2+a+bx2+cx+bx+c1=x2(a+b)+x(b+c)+(a+c)a+b=0b+c=0a+c=1a+c=1b=aca=0a=ca=12b=12c=1212dxx+1+12x+1x2+1dx12dxx+1142x2x2+1dx12dxx+114d(x2+1)x2+1+12dxx2+112ln(x+1)14ln(x2+1)+12tan1(x)+c
Answered by Bird last updated on 06/Nov/20
I =∫  (dx/(1+x+x^2 +x^3 )) ⇒  I =∫   (dx/((1−x^4 )/(1−x))) =∫  ((1−x)/(1−x^4 ))dx  =∫  (((1−x)dx)/((1−x^2 )(1+x^2 )))  =∫  (dx/((x+1)(x^2 +1))) let decompose  F(x)=(1/((x+1)(x^2 +1)))  F(x)=(a/(x+1))+((bx+c)/(x^2 +1))  a=(1/2) ,lim_(x→+∞) xF(x)=0=a+b ⇒  b=−(1/2)  F(o)=1=a+c ⇒c=1−(1/2)=(1/2) ⇒  F(x)=(1/(2(x+1))) +((−(x/2)+(1/2))/(x^2 +1))  =(1/(2(x+1)))−(1/2) ((x−1)/(x^2 +1)) ⇒  I =(1/2)∫ (dx/(x+1))−(1/4)∫ ((2x)/(x^2 +1))dx+(1/2)∫ (dx/(x^2 +1))  =(1/2)ln∣x+1∣−(1/4)ln(x^2 +1)+(1/2)arctanx +C
I=dx1+x+x2+x3I=dx1x41x=1x1x4dx=(1x)dx(1x2)(1+x2)=dx(x+1)(x2+1)letdecomposeF(x)=1(x+1)(x2+1)F(x)=ax+1+bx+cx2+1a=12,limx+xF(x)=0=a+bb=12F(o)=1=a+cc=112=12F(x)=12(x+1)+x2+12x2+1=12(x+1)12x1x2+1I=12dxx+1142xx2+1dx+12dxx2+1=12lnx+114ln(x2+1)+12arctanx+C

Leave a Reply

Your email address will not be published. Required fields are marked *