dx-x-4-1-x-2-1- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 112251 by bobhans last updated on 07/Sep/20 ∫dx(x4−1)x2+1 Answered by john santu last updated on 07/Sep/20 ∫dx(x4−1)x2+1?setting:tanr=x⇒dx=sec2rdrI=∫dx(x2−1)(x2+1)x2+1I=∫sec2rdr(tan2r−1)sec3rI=∫cosrdrtan2r−1=∫cos3rdrsin2r−cos2rI=∫(1−sin2r)cosrdr2sin2r−1letsinr=q⇒I=∫1−q22q2−1dqI=12∫(12q2−1−1)dqI=14∫(−2+1q2−1−1q2+1)dqI=14(−2q+12ln∣q2−1∣−12ln∣q2+1∣)+cI=14(−2xx2+1+12ln∣x2−x2+1x2+x2+1∣)+c Commented by bemath last updated on 07/Sep/20 santuyyy Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: pi-2-pi-2-cos-2019-x-cos-2020x-dx-pls-help-Next Next post: Question-177784 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.