Menu Close

dx-x-4-1-x-2-1-




Question Number 112251 by bobhans last updated on 07/Sep/20
∫ (dx/((x^4 −1)(√(x^2 +1))))
dx(x41)x2+1
Answered by john santu last updated on 07/Sep/20
∫ (dx/((x^4 −1)(√(x^2 +1)))) ?   setting: tan r = x ⇒dx = sec^2 r dr  I=∫ (dx/((x^2 −1)(x^2 +1)(√(x^2 +1))))  I= ∫ ((sec^2 r dr)/((tan^2 r−1)sec^3 r))  I= ∫ ((cos r dr)/(tan^2 r−1))=∫((cos^3 r dr)/(sin^2 r−cos^2 r))  I= ∫ (((1−sin^2 r)cos r dr)/(2sin^2 r−1))  let sin r = q ⇒I=∫ ((1−q^2 )/(2q^2 −1)) dq  I= (1/2)∫ ((1/(2q^2 −1))−1) dq  I= (1/4)∫(−2+(1/(q(√2)−1))−(1/(q(√2)+1)))dq  I= (1/4)(−2q+(1/( (√2)))ln ∣q(√2) −1∣−(1/( (√2)))ln ∣q(√2) +1∣ )+ c  I=(1/4)(((−2x)/( (√(x^2 +1))))+(1/( (√2)))ln ∣((x(√2) −(√(x^2 +1)))/(x(√2) +(√(x^2 +1))))∣ ) + c
dx(x41)x2+1?setting:tanr=xdx=sec2rdrI=dx(x21)(x2+1)x2+1I=sec2rdr(tan2r1)sec3rI=cosrdrtan2r1=cos3rdrsin2rcos2rI=(1sin2r)cosrdr2sin2r1letsinr=qI=1q22q21dqI=12(12q211)dqI=14(2+1q211q2+1)dqI=14(2q+12lnq2112lnq2+1)+cI=14(2xx2+1+12lnx2x2+1x2+x2+1)+c
Commented by bemath last updated on 07/Sep/20
santuyyy
santuyyy

Leave a Reply

Your email address will not be published. Required fields are marked *