Menu Close

dx-x-4-x-2-a-2-




Question Number 146147 by iloveisrael last updated on 11/Jul/21
 Υ = ∫ (dx/(x^4  (√(x^2 −a^2 )))) =?
Υ=dxx4x2a2=?
Answered by EDWIN88 last updated on 11/Jul/21
 Solve ∫ (dx/(x^4  (√(x^2 −a^2 ))))    Υ=∫ (dx/(x^2 .x^3 (√(1−a^2 x^(−2) ))))   let u=1−a^2 x^(−2)  →(du/(2a^2 ))=(dx/x^3 )  and (a^2 /x^2 )=1−u⇒(1/x^2 )=((1−u)/a^2 )  Υ=∫ (((1−u)du)/(2a^4 .(√u))) =(1/(2a^4 ))∫ (u^(−1/2) −u^(1/2) )du  Υ=(1/(2a^4 ))(2(√u)−(2/3)u(√u))+c   Υ=((√u)/a^4 )(1−(1/3)u)+c   Υ=((√(a^2 −x^2 ))/(a^4 x))(1−((x^2 −a^2 )/x^2 ))+c  Υ=((√(a^2 −x^2 ))/(a^2 x^3 )) + c
Solvedxx4x2a2Υ=dxx2.x31a2x2letu=1a2x2du2a2=dxx3anda2x2=1u1x2=1ua2Υ=(1u)du2a4.u=12a4(u1/2u1/2)duΥ=12a4(2u23uu)+cΥ=ua4(113u)+cΥ=a2x2a4x(1x2a2x2)+cΥ=a2x2a2x3+c
Answered by mathmax by abdo last updated on 11/Jul/21
Υ=_(x=(a/(sint)))    ∫  ((sin^4 t)/(a^4 (√((a^2 /(sin^2 t))−a^2 ))))(−((acost)/(sin^2 t)))dt  =(1/a^4 )∫  ((sin^2 t .cost)/(cost))sint dt =(1/a^4 )∫ sin^3 t dt  sin^3 t =sint(((1−cos(2t))/2))=(1/2)(sint−sint cos(2t))  sint cos(2t)=cos((π/2)−t)cos(2t)=(1/2){cos((π/2)+t)+cos((π/2)−3t))  =(1/2){−sint+sin(3t)} ⇒sin^3 t=(1/2)sint−(1/4){−sint+sin(3t)}  =(3/4)sint−(1/4)sin(3t) ⇒Υ=(1/a^4 )∫ ((3/4)sint−(1/4)sin(3t))dt  =−(3/(4a^4 ))cost +(1/(12a^4 ))cos(3t) +K  sint=(a/x) ⇒cost =(√(1−(a^2 /x^2 )))  cos(3t)=cost .cos2t−sint sin(2t)  =cost(2cos^2 t−1)−2sin^2 t cost  =(√(1−(a^2 /x^2 )))(2(1−(a^2 /x^2 ))−1)−2(a^2 /x^2 )(√(1−(a^2 /x^2 ))) ⇒  Ψ=−(3/(4a^4 ))(√(1−(a^2 /x^2 )))+(1/(12a^4 ))(√(1−(a^2 /x^2 )))(1−((4a^2 )/x^2 )) +K
Υ=x=asintsin4ta4a2sin2ta2(acostsin2t)dt=1a4sin2t.costcostsintdt=1a4sin3tdtsin3t=sint(1cos(2t)2)=12(sintsintcos(2t))sintcos(2t)=cos(π2t)cos(2t)=12{cos(π2+t)+cos(π23t))=12{sint+sin(3t)}sin3t=12sint14{sint+sin(3t)}=34sint14sin(3t)Υ=1a4(34sint14sin(3t))dt=34a4cost+112a4cos(3t)+Ksint=axcost=1a2x2cos(3t)=cost.cos2tsintsin(2t)=cost(2cos2t1)2sin2tcost=1a2x2(2(1a2x2)1)2a2x21a2x2Ψ=34a41a2x2+112a41a2x2(14a2x2)+K

Leave a Reply

Your email address will not be published. Required fields are marked *