Menu Close

dx-x-a-b-x-




Question Number 122697 by john santu last updated on 19/Nov/20
  ∫ (dx/( (√((x−a)(b−x))))) ?
dx(xa)(bx)?
Answered by liberty last updated on 19/Nov/20
  Solve ϕ(x)=∫ (dx/( (√((x−a)(b−x))))) ?     Solution :    letting x = acos^2 q + b sin^2 q   where a<x<b ,0<q<(π/2)  we get  { ((x−a=(b−a)sin^2 q)),((b−x=(b−a)cos^2 q )) :}   and tan^2 q = ((x−a)/(b−x)) or tan q = (√((x−a)/(b−x)))  dx = 2(b−a)sin qcos q dq  implying that   ϕ(x) = ∫ (dx/( (√((x−a)(b−x))))) = ∫ 2dq   ϕ(x) = 2q + c = 2arctan ((√((x−a)/(b−x)))) + c. ✓
Solveφ(x)=dx(xa)(bx)?Solution:lettingx=acos2q+bsin2qwherea<x<b,0<q<π2weget{xa=(ba)sin2qbx=(ba)cos2qandtan2q=xabxortanq=xabxdx=2(ba)sinqcosqdqimplyingthatφ(x)=dx(xa)(bx)=2dqφ(x)=2q+c=2arctan(xabx)+c.
Commented by john santu last updated on 19/Nov/20
nice
nice
Answered by som(math1967) last updated on 19/Nov/20
let x−a=z^2   dx=2zdz  ∫((2zdz)/(z(√(b−a−z^2 ))))  2∫(dz/( (√(b−a−z^2 ))))  2sin^(−1) (z/( (√(b−a)))) +c  2sin^(−1) ((√((x−a)/(b−a))))+c
letxa=z2dx=2zdz2zdzzbaz22dzbaz22sin1zba+c2sin1(xaba)+c
Answered by MJS_new last updated on 19/Nov/20
∫(dx/( (√((x−a)(b−x)))))=       [t=((√(x−a))/( (√(b−x)))) → dx=(2/(b−a))(√(x−a))(√((b−x)^3 ))dt]  =2∫(dt/(t^2 +1))=2arctan t =2arctan ((√(x−a))/( (√(b−x)))) +C
dx(xa)(bx)=[t=xabxdx=2baxa(bx)3dt]=2dtt2+1=2arctant=2arctanxabx+C
Commented by liberty last updated on 19/Nov/20
amazing...your method very fastest  sir
amazingyourmethodveryfastestsir
Commented by MJS_new last updated on 19/Nov/20
I′m just an old integral lover...
Imjustanoldintegrallover
Commented by liberty last updated on 19/Nov/20
hahahaha....great
hahahaha.great

Leave a Reply

Your email address will not be published. Required fields are marked *