Menu Close

dx-x-n-x-the-problems-i-have-posted-are-tricky-




Question Number 47743 by tanmay.chaudhury50@gmail.com last updated on 14/Nov/18
∫(dx/(x^n −x))    the problems i have posted are tricky...
dxxnxtheproblemsihavepostedaretricky
Answered by tanmay.chaudhury50@gmail.com last updated on 14/Nov/18
∫(dx/(x(x^(n−1) −1)))  ∫((x^(n−2)  dx)/(x^(n−1) (x^(n−1) −1)))  t=x^(n−1)    dt=(n−1)x^(n−2) dx  ∫(dt/((n−1)(t)(t−1)))  (1/(n−1))∫((t−(t−1))/(t(t−1)))dt  (1/(n−1))[∫(dt/(t−1))−∫(dt/t)]  (1/(n−1))[ln(((t−1)/t))]+c  (1/(n−1))[ln(((x^(n−1) −1)/x^(n−1) ))]+c
dxx(xn11)xn2dxxn1(xn11)t=xn1dt=(n1)xn2dxdt(n1)(t)(t1)1n1t(t1)t(t1)dt1n1[dtt1dtt]1n1[ln(t1t)]+c1n1[ln(xn11xn1)]+c
Answered by ajfour last updated on 14/Nov/18
let   t=(1/x)   ⇒  dt = −(dx/x^2 )      dx = −(dt/t^2 )    I = ∫(((−(dt/t^2 )))/((1/t^n )−(1/t))) = −∫((t^(n−2) dt)/(1−t^(n−1) ))       = (1/(n−1))∫ ((−(n−1)t^(n−2) dt)/(1−t^(n−1) ))      I = (1/(n−1))ln ∣1−(1/t^(n−1) )∣+c .
lett=1xdt=dxx2dx=dtt2I=(dtt2)1tn1t=tn2dt1tn1=1n1(n1)tn2dt1tn1I=1n1ln11tn1+c.
Commented by rahul 19 last updated on 14/Nov/18
Nice ���� Is there any particular reason why u substitute t=1/x?
Commented by tanmay.chaudhury50@gmail.com last updated on 14/Nov/18
excellent...
excellent

Leave a Reply

Your email address will not be published. Required fields are marked *