Menu Close

dx-x-x-1-x-2-x-3-x-n-




Question Number 47740 by tanmay.chaudhury50@gmail.com last updated on 14/Nov/18
∫(dx/(x(x+1)(x+2)(x+3)...(x+n)))
dxx(x+1)(x+2)(x+3)(x+n)
Answered by ajfour last updated on 14/Nov/18
(1/(x(x+1)(x+2)...(x+r)...(x+n)))  = Σ(A_r /(x+r))   A_r  = (1/((−1)^r  r!(n−r)!))  ⇒I = Σ_(r=0) ^n (1/((−1)^r  r!(n−r)!)) ln (x+r)+c .
1x(x+1)(x+2)(x+r)(x+n)=ΣArx+rAr=1(1)rr!(nr)!I=nr=01(1)rr!(nr)!ln(x+r)+c.
Commented by tanmay.chaudhury50@gmail.com last updated on 14/Nov/18
excellent...
excellent
Commented by ajfour last updated on 14/Nov/18
as example    I = ∫(dx/(x(x+1)(x+2)))    = (1/2)ln ∣x∣−ln ∣x+1∣+(1/2)ln ∣x+2∣+c .
asexampleI=dxx(x+1)(x+2)=12lnxlnx+1+12lnx+2+c.
Answered by tanmay.chaudhury50@gmail.com last updated on 14/Nov/18
(1/(x(x+1)(x+2)(x+3)...(x+n)))=(a_0 /x)+(a_1 /(x+1))+(a_2 /(x+2))+...+(a_n /(x+n))  so  1=a_0 (x+1)(x+2)(x+3)...(x+n)+a_1 (x)(x+2)(x+3)..(x+n)+...  to find a_(0 )  put x=0  a_0 ×n!=1   a_0 =(1/(n!))  similarly to find a_1  put x+1=0  a_1 (−1)(1)(2)...(n−1)=1  a_1 ×(−1)×(n−1)!=1  a_1 =(1/((−1)(n−1)!))  in this way w e find a_0 ,a_1 ,a_2 ...a_n   so the intregation value is  a_0 lnx+a_1 ln(x+1)+a_2 (x+2)....+a_n (x+n)+c  nxt step put value of a_0 ,a_1 ,a_2 ....a_n   i have solved in detail for understanding...
1x(x+1)(x+2)(x+3)(x+n)=a0x+a1x+1+a2x+2++anx+nso1=a0(x+1)(x+2)(x+3)(x+n)+a1(x)(x+2)(x+3)..(x+n)+tofinda0putx=0a0×n!=1a0=1n!similarlytofinda1putx+1=0a1(1)(1)(2)(n1)=1a1×(1)×(n1)!=1a1=1(1)(n1)!inthiswaywefinda0,a1,a2ansotheintregationvalueisa0lnx+a1ln(x+1)+a2(x+2).+an(x+n)+cnxtstepputvalueofa0,a1,a2.anihavesolvedindetailforunderstanding

Leave a Reply

Your email address will not be published. Required fields are marked *