Menu Close

dx-x-x-2-1-




Question Number 85637 by jagoll last updated on 23/Mar/20
∫ (dx/(x+(√(x^2 +1))))
dxx+x2+1
Commented by abdomathmax last updated on 23/Mar/20
I =∫  (dx/(x+(√(x^2 +1))))  we do the changement x=sh(t) ⇒  I =∫  ((cht)/(sht +cht))dt =∫  ((e^t  +e^(−t) )/(e^t −e^(−t)  +e^t  +e^(−t) ))dt  =∫  ((e^t  +e^(−t) )/(2e^t ))dt?=∫  (e^(−t) /2)(e^t +e^(−t) )dt   =(1/2)∫ (1+e^(−2t) )dt =(t/2)−(1/4)e^(−2t)  +c  t=ln(x+(√(1+x^2 ))) ⇒e^(−2t)  =(1/((x+(√(1+x^2 )))^2 )) ⇒  I =(1/2)ln(x+(√(1+x^2 )))−(1/(4(x+(√(1+x^2 )))^2 )) +c
I=dxx+x2+1wedothechangementx=sh(t)I=chtsht+chtdt=et+etetet+et+etdt=et+et2etdt?=et2(et+et)dt=12(1+e2t)dt=t214e2t+ct=ln(x+1+x2)e2t=1(x+1+x2)2I=12ln(x+1+x2)14(x+1+x2)2+c
Commented by john santu last updated on 23/Mar/20
let x = tan t  ∫ ((sec^2 t dt)/(tan t+sec t)) = ∫ (dt/(cos t(sin t+1)))  = ∫ ((sin t−1)/(−cos^3 t)) dt = ∫ ((1−sin t)/(cos^3 t))  = ∫ sec^3 t dt +∫ ((d(cos t))/(cos^3 t))  = (1/2)sec t tan t + (1/2)ln∣sec t+tan t∣   −(1/2)sec^2 t + c  = (1/2)x(√(1+x^2 )) + (1/2)ln ∣x+(√(1+x^2 )) ∣−  (1/2)(1+x^2 ) + c
letx=tantsec2tdttant+sect=dtcost(sint+1)=sint1cos3tdt=1sintcos3t=sec3tdt+d(cost)cos3t=12secttant+12lnsect+tant12sec2t+c=12x1+x2+12lnx+1+x212(1+x2)+c
Answered by MJS last updated on 23/Mar/20
∫(dx/(x+(√(x^2 +1))))=−∫(x−(√(x^2 +1)))dx=  =∫(√(x^2 +1))dx−∫xdx and these are standard
dxx+x2+1=(xx2+1)dx==x2+1dxxdxandthesearestandard
Commented by john santu last updated on 24/Mar/20
hahaha..standard sir
hahaha..standardsir

Leave a Reply

Your email address will not be published. Required fields are marked *