Menu Close

dx-x-x-2-2x-2-




Question Number 157442 by bobhans last updated on 23/Oct/21
  ∫ (dx/(x−(√(x^2 +2x+2))))
dxxx2+2x+2
Answered by MJS_new last updated on 23/Oct/21
∫(dx/(x−(√(x^2 +2x+2))))=       [t=x+1+(√(x^2 +2x+2)) → dx=((√(x^2 +2x+2))/(x+1+(√(x^2 +2x+2))))dt]  =−(1/2)∫((t^2 +1)/(t(t+1)))dt=∫((1/(t+1))−(1/(2t))−(1/2))dt=  =ln (t+1) −(1/2)ln t −(1/2)t=  =(1/2)(ln (((t+1)^2 )/t) −t)=  =(1/2)(ln (1+(√(x^2 +2x+2))) −x−(√(x^2 +2x+2)))+C
dxxx2+2x+2=[t=x+1+x2+2x+2dx=x2+2x+2x+1+x2+2x+2dt]=12t2+1t(t+1)dt=(1t+112t12)dt==ln(t+1)12lnt12t==12(ln(t+1)2tt)==12(ln(1+x2+2x+2)xx2+2x+2)+C
Answered by cortano last updated on 23/Oct/21
(1/(x−(√(x^2 +2x+2)))) =((x+(√(x^2 +2x+2)))/(−2x−2))  I=−∫(x/(2x+2)) dx−∫((√(x^2 +2x+2))/(2x+2)) dx  I_1 =−(1/2)∫ ((x+1−1)/(x+1)) dx=−(1/2)x+ln ∣x+1∣+c_1   I_2 =−(1/2)∫((√((x+1)^2 +1))/(x+1)) dx  x+1=tan u  I_2 =−(1/2)∫ ((sec u)/(tan u)) sec^2  du  I_2 =−(1/2)∫ csc x sec^2 x dx  IBP ⇒ { ((u=csc x⇒du=−csc x cot x dx)),((v=tan x)) :}  I_2 =−(1/2){csc x tan x+∫ csc x dx }  I_2 =−(1/2)csc x tan x−(1/2)ln ∣csc x−cot x∣ +c_2   I=I_1 +I_2
1xx2+2x+2=x+x2+2x+22x2I=x2x+2dxx2+2x+22x+2dxI1=12x+11x+1dx=12x+lnx+1+c1I2=12(x+1)2+1x+1dxx+1=tanuI2=12secutanusec2duI2=12cscxsec2xdxIBP{u=cscxdu=cscxcotxdxv=tanxI2=12{cscxtanx+cscxdx}I2=12cscxtanx12lncscxcotx+c2I=I1+I2

Leave a Reply

Your email address will not be published. Required fields are marked *