dx-x-x-2-2x-2- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 157442 by bobhans last updated on 23/Oct/21 ∫dxx−x2+2x+2 Answered by MJS_new last updated on 23/Oct/21 ∫dxx−x2+2x+2=[t=x+1+x2+2x+2→dx=x2+2x+2x+1+x2+2x+2dt]=−12∫t2+1t(t+1)dt=∫(1t+1−12t−12)dt==ln(t+1)−12lnt−12t==12(ln(t+1)2t−t)==12(ln(1+x2+2x+2)−x−x2+2x+2)+C Answered by cortano last updated on 23/Oct/21 1x−x2+2x+2=x+x2+2x+2−2x−2I=−∫x2x+2dx−∫x2+2x+22x+2dxI1=−12∫x+1−1x+1dx=−12x+ln∣x+1∣+c1I2=−12∫(x+1)2+1x+1dxx+1=tanuI2=−12∫secutanusec2duI2=−12∫cscxsec2xdxIBP⇒{u=cscx⇒du=−cscxcotxdxv=tanxI2=−12{cscxtanx+∫cscxdx}I2=−12cscxtanx−12ln∣cscx−cotx∣+c2I=I1+I2 Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: if-x-y-z-0-then-2-x-y-z-2-2-x-2-y-2-z-Next Next post: 7-6x-10-1-5-2-49-1-x-2-1-5- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.