Menu Close

dx-x-x-2-4-




Question Number 146215 by mathdanisur last updated on 12/Jul/21
∫ (dx/(x(√(x^2 −4)))) = ?
dxxx24=?
Answered by Olaf_Thorendsen last updated on 12/Jul/21
F(x) = ∫(dx/(x(√(x^2 −4))))  F(2chu) = ∫((2shudu)/( 2chu(√(4ch^2 u−4))))  F(2chu) = ∫((shudu)/( chu×2shu))  F(2chu) = (1/2)∫(du/( chu))  F(2chu) = ∫((e^u du)/( e^(2u) +1))  F(2chu) = arctan(e^u )+C  F(x) = arctan(e^(argch(x/2)) )+C  F(x) = arctan(e^(ln((x/2)+(√((x^2 /4)−1)))) )+C  F(x) = arctan((x/2)+(√((x^2 /4)−1)))+C
F(x)=dxxx24F(2chu)=2shudu2chu4ch2u4F(2chu)=shuduchu×2shuF(2chu)=12duchuF(2chu)=eudue2u+1F(2chu)=arctan(eu)+CF(x)=arctan(eargchx2)+CF(x)=arctan(eln(x2+x241))+CF(x)=arctan(x2+x241)+C
Answered by qaz last updated on 12/Jul/21
∫(dx/(x(√(x^2 −4))))=∫(dx/(x^2 (√(1−(4/x^2 )))))=−(1/2)∫((d((2/x)))/( (√(1−(4/x^2 )))))=−(1/2)sin^(−1) (2/x)+C
dxxx24=dxx214x2=12d(2x)14x2=12sin12x+C
Answered by mathmax by abdo last updated on 12/Jul/21
Φ=∫  (dx/(x(√(x^2 −4)))) we do the changement x=(2/(sint)) ⇒(dx/dt)=−((2cost)/(sin^2 t))  ⇒Φ=−2∫  ((cost)/(sin^2 t×(2/(sint))(√((4/(sin^2 t))−4))))dt  =−∫  ((cost)/(sint×2×((cost)/(sint))))dt=−(1/2)∫ dt =−(t/2) C  sint=(2/x) ⇒t=arcsin((2/x)) ⇒Φ=−(1/2)arcsin((2/x)) +C
Φ=dxxx24wedothechangementx=2sintdxdt=2costsin2tΦ=2costsin2t×2sint4sin2t4dt=costsint×2×costsintdt=12dt=t2Csint=2xt=arcsin(2x)Φ=12arcsin(2x)+C
Commented by mathdanisur last updated on 12/Jul/21
Thanks Ser
ThanksSer

Leave a Reply

Your email address will not be published. Required fields are marked *