Question Number 116701 by bemath last updated on 06/Oct/20
$$\int\:\frac{\mathrm{dx}}{\mathrm{x}+\mathrm{x}\sqrt{\mathrm{x}}}\:=? \\ $$
Commented by bobhans last updated on 06/Oct/20
$$\:\int\:\frac{\mathrm{dx}}{\mathrm{x}+\mathrm{x}\sqrt{\mathrm{x}}\:}\:=\:\int\:\frac{\mathrm{dx}}{\mathrm{x}\left(\mathrm{1}+\sqrt{\mathrm{x}}\:\right)} \\ $$$$\left[\:\mathrm{letting}\:\mathrm{x}\:=\:\lambda^{\mathrm{2}} \:\rightarrow\mathrm{dx}\:=\:\mathrm{2}\lambda\:\mathrm{d}\lambda\:\right]\: \\ $$$$\mathrm{I}=\int\:\frac{\mathrm{2}\lambda\:\mathrm{d}\lambda}{\lambda^{\mathrm{2}} \left(\mathrm{1}+\lambda\right)}\:=\:\int\:\frac{\mathrm{2}\:\mathrm{d}\lambda}{\lambda\left(\mathrm{1}+\lambda\right)} \\ $$$$=\:\mathrm{2}\:\left[\int\:\left(\frac{\mathrm{1}}{\lambda}\:−\frac{\mathrm{1}}{\mathrm{1}+\lambda}\right)\mathrm{d}\lambda\:\right]\: \\ $$$$=\:\mathrm{2}\:\left[\:\mathrm{ln}\:\lambda−\mathrm{ln}\:\left(\mathrm{1}+\lambda\right)\:\right]\:+\:\mathrm{c} \\ $$$$=\:\mathrm{2}\:\mathrm{ln}\:\left(\frac{\sqrt{\mathrm{x}}}{\mathrm{1}+\sqrt{\mathrm{x}}}\:\right)\:+\:\mathrm{c} \\ $$
Commented by MJS_new last updated on 06/Oct/20
$$\int\frac{{dx}}{{x}\left(\mathrm{1}+{x}^{{q}} \right)}=−\frac{\mathrm{1}}{{q}}\mathrm{ln}\:\mid\frac{\mathrm{1}}{{x}^{{q}} }+\mathrm{1}\mid\:+{C}\:=\mathrm{ln}\:\mid{x}\mid\:−\frac{\mathrm{1}}{{q}}\mathrm{ln}\:\mid{x}^{{q}} +\mathrm{1}\mid\:+{C} \\ $$
Answered by Dwaipayan Shikari last updated on 06/Oct/20
$$\int\frac{{dx}}{\:{x}+{x}\sqrt{{x}}}\:\:\:\:\:\:\:\:{x}={t}^{\mathrm{2}} \Rightarrow\mathrm{1}=\mathrm{2}{t}\frac{{dt}}{{dx}} \\ $$$$\int\frac{\mathrm{2}{tdt}}{{t}^{\mathrm{2}} \left(\mathrm{1}+{t}\right)}=\mathrm{2}\int\frac{\mathrm{1}}{{t}\left(\mathrm{1}+{t}\right)}{dt}=\mathrm{2}{log}\left(\frac{{t}}{{t}+\mathrm{1}}\right)+{C} \\ $$$$=\mathrm{2}{log}\left(\frac{\sqrt{{x}}}{\:\sqrt{{x}}+\mathrm{1}}\right)+{C} \\ $$
Commented by bemath last updated on 06/Oct/20
$$\mathrm{gaves}\:\mathrm{kudos} \\ $$$$ \\ $$
Answered by mathmax by abdo last updated on 06/Oct/20
$$\mathrm{I}\:=\int\:\:\frac{\mathrm{dx}}{\mathrm{x}+\mathrm{x}\sqrt{\mathrm{x}}}\:\Rightarrow\:\mathrm{I}\:=_{\sqrt{\mathrm{x}}=\mathrm{t}} \:\:\:\int\:\:\frac{\mathrm{2tdt}}{\mathrm{t}^{\mathrm{2}} \:+\mathrm{t}^{\mathrm{3}} }\:=\mathrm{2}\:\int\:\:\:\frac{\mathrm{dt}}{\mathrm{t}+\mathrm{t}^{\mathrm{2}} } \\ $$$$=\mathrm{2}\:\int\:\:\frac{\mathrm{dt}}{\mathrm{t}\left(\mathrm{t}+\mathrm{1}\right)}\:=\mathrm{2}\:\int\left(\frac{\mathrm{1}}{\mathrm{t}}−\frac{\mathrm{1}}{\mathrm{t}+\mathrm{1}}\right)\mathrm{dt}\:=\mathrm{2ln}\mid\frac{\mathrm{t}}{\mathrm{t}+\mathrm{1}}\mid\:+\mathrm{c} \\ $$$$=\mathrm{2ln}\mid\frac{\sqrt{\mathrm{x}}}{\mathrm{1}+\sqrt{\mathrm{x}}}\mid\:+\mathrm{c} \\ $$