Menu Close

dx-x-x-x-pi-where-gt-0-




Question Number 151341 by peter frank last updated on 20/Aug/21
∫_α ^β (dx/(x(√((x−α)(β−x) ))))=(π/( (√(αβ))))  where α,β >0
$$\int_{\alpha} ^{\beta} \frac{\mathrm{dx}}{\mathrm{x}\sqrt{\left(\mathrm{x}−\alpha\right)\left(\beta−\mathrm{x}\right)\:}}=\frac{\pi}{\:\sqrt{\alpha\beta}} \\ $$$$\mathrm{where}\:\alpha,\beta\:>\mathrm{0} \\ $$
Answered by Kamel last updated on 20/Aug/21
  Ω(α,β)=∫_α ^β (dx/(x(√((x−α)(β−x))))),β>α>0.  (x−α)z=(√((x−α)(β−x)))  (x−α)z^2 =(β−x)⇒x=((β+αz^2 )/(1+z^2 )),dx=−2z(β−α)(dz/((1+z^2 )^2 ))  x−α=((β+αz^2 )/(1+z^2 ))−α=((β−α)/(1+z^2 ))  ∴ Ω(α,β)=2∫_0 ^(+∞) (dz/((β+αz^2 )))=(π/( (√(αβ))))
$$ \\ $$$$\Omega\left(\alpha,\beta\right)=\int_{\alpha} ^{\beta} \frac{{dx}}{{x}\sqrt{\left({x}−\alpha\right)\left(\beta−{x}\right)}},\beta>\alpha>\mathrm{0}. \\ $$$$\left({x}−\alpha\right){z}=\sqrt{\left({x}−\alpha\right)\left(\beta−{x}\right)} \\ $$$$\left({x}−\alpha\right){z}^{\mathrm{2}} =\left(\beta−{x}\right)\Rightarrow{x}=\frac{\beta+\alpha{z}^{\mathrm{2}} }{\mathrm{1}+{z}^{\mathrm{2}} },{dx}=−\mathrm{2}{z}\left(\beta−\alpha\right)\frac{{dz}}{\left(\mathrm{1}+{z}^{\mathrm{2}} \right)^{\mathrm{2}} } \\ $$$${x}−\alpha=\frac{\beta+\alpha{z}^{\mathrm{2}} }{\mathrm{1}+{z}^{\mathrm{2}} }−\alpha=\frac{\beta−\alpha}{\mathrm{1}+{z}^{\mathrm{2}} } \\ $$$$\therefore\:\Omega\left(\alpha,\beta\right)=\mathrm{2}\int_{\mathrm{0}} ^{+\infty} \frac{{dz}}{\left(\beta+\alpha{z}^{\mathrm{2}} \right)}=\frac{\pi}{\:\sqrt{\alpha\beta}} \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *