Menu Close

dx-ydy-x-2-ydy-




Question Number 127706 by arash sharifi last updated on 01/Jan/21
dx+ydy=x^2 ydy
$${dx}+{ydy}={x}^{\mathrm{2}} {ydy} \\ $$
Answered by liberty last updated on 01/Jan/21
 dx = y(x^2 −1)dy   (dx/(x^2 −1)) = y dy    ∫ ((1/(x−1)) −(1/(x+1))) = 2∫ y dy   ln C∣((x−1)/(x+1)) ∣ = y^2  ; C∣((x−1)/(x+1))∣ = e^y^2   .
$$\:\mathrm{dx}\:=\:\mathrm{y}\left(\mathrm{x}^{\mathrm{2}} −\mathrm{1}\right)\mathrm{dy} \\ $$$$\:\frac{\mathrm{dx}}{\mathrm{x}^{\mathrm{2}} −\mathrm{1}}\:=\:\mathrm{y}\:\mathrm{dy}\: \\ $$$$\:\int\:\left(\frac{\mathrm{1}}{\mathrm{x}−\mathrm{1}}\:−\frac{\mathrm{1}}{\mathrm{x}+\mathrm{1}}\right)\:=\:\mathrm{2}\int\:\mathrm{y}\:\mathrm{dy} \\ $$$$\:\mathrm{ln}\:\mathrm{C}\mid\frac{\mathrm{x}−\mathrm{1}}{\mathrm{x}+\mathrm{1}}\:\mid\:=\:\mathrm{y}^{\mathrm{2}} \:;\:\mathrm{C}\mid\frac{\mathrm{x}−\mathrm{1}}{\mathrm{x}+\mathrm{1}}\mid\:=\:\mathrm{e}^{\mathrm{y}^{\mathrm{2}} } \:. \\ $$
Answered by Dwaipayan Shikari last updated on 01/Jan/21
1+y(1−x^2 )(dy/dx)⇒(dy/dx)=(1/(y(x^2 −1)))⇒(1/2)y^2 =(1/2)log(((x−1)/(x+1)))+C  y^2 +log(((x+1)/(x−1)))=C_1
$$\mathrm{1}+{y}\left(\mathrm{1}−{x}^{\mathrm{2}} \right)\frac{{dy}}{{dx}}\Rightarrow\frac{{dy}}{{dx}}=\frac{\mathrm{1}}{{y}\left({x}^{\mathrm{2}} −\mathrm{1}\right)}\Rightarrow\frac{\mathrm{1}}{\mathrm{2}}{y}^{\mathrm{2}} =\frac{\mathrm{1}}{\mathrm{2}}{log}\left(\frac{{x}−\mathrm{1}}{{x}+\mathrm{1}}\right)+{C} \\ $$$${y}^{\mathrm{2}} +{log}\left(\frac{{x}+\mathrm{1}}{{x}−\mathrm{1}}\right)={C}_{\mathrm{1}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *