Menu Close

dxdy-1-x-2-y-2-




Question Number 122412 by mohammad17 last updated on 16/Nov/20
∫∫((dxdy)/(1−x^2 y^2 ))
dxdy1x2y2
Answered by Olaf last updated on 16/Nov/20
I(x,y) = ∫∫((dxdy)/(1−x^2 y^2 ))  I(x,y) = ∫∫((dxdy)/((1−xy)(1+xy)))  I(x,y) = (1/2)∫∫((1/(1−xy))+(1/(1+xy)))dxdy  I(x,y) = (1/2)∫(−(1/y)ln∣1−xy∣+(1/y)ln∣1+xy∣)dy  I(x,y) = −(1/2)∫(1/y)ln(((1−xy)/(1+xy)))dy  Let u = xy  I(x,y) = −(1/2)∫(x/u)ln(((1−u)/(1+u)))(du/x)  I(x,y) = −(1/2)∫ln(((1−u)/(1+u)))(du/u)  I(x,y) = (1/2)(dilog(1−u)−dilog(1+u))  I(x,y) = (1/2)(dilog(1−xy)−dilog(1+xy))
I(x,y)=dxdy1x2y2I(x,y)=dxdy(1xy)(1+xy)I(x,y)=12(11xy+11+xy)dxdyI(x,y)=12(1yln1xy+1yln1+xy)dyI(x,y)=121yln(1xy1+xy)dyLetu=xyI(x,y)=12xuln(1u1+u)duxI(x,y)=12ln(1u1+u)duuI(x,y)=12(dilog(1u)dilog(1+u))I(x,y)=12(dilog(1xy)dilog(1+xy))
Commented by mohammad17 last updated on 16/Nov/20
whats the mean of dilog ?
whatsthemeanofdilog?
Commented by Olaf last updated on 17/Nov/20
The Spence function or dilogarithm,  denoted Li_2  or dilog, is a special case of  polylogarithm. Two special functions  are called the Spence function :  Li_2 (z) = −∫_0 ^z ((ln(1−u))/u)du = ∫_1 ^(1−z) ((lnt)/(1−t))dt, z∈C
TheSpencefunctionordilogarithm,denotedLi2ordilog,isaspecialcaseofpolylogarithm.TwospecialfunctionsarecalledtheSpencefunction:Li2(z)=0zln(1u)udu=11zlnt1tdt,zC

Leave a Reply

Your email address will not be published. Required fields are marked *