Menu Close

dy-dx-1-3e-y-2x-




Question Number 105238 by bemath last updated on 27/Jul/20
(dy/dx) = (1/(3e^y −2x)) ?
$$\frac{{dy}}{{dx}}\:=\:\frac{\mathrm{1}}{\mathrm{3}{e}^{{y}} −\mathrm{2}{x}}\:? \\ $$
Answered by john santu last updated on 27/Jul/20
(dx/dy) = 3e^y −2x   (dx/dy) + 2x = 3e^y   integrating factor   u(y) = e^(∫2 dy)  = e^(2y)   ⇔e^(2y)  (dx/dy) + 2xe^(2y)  = 3e^(3y)   (d/dy) [ x.e^(2y)  ] = 3e^(3y)   ∫ (d/dy)[x.e^(2y) ] dy = ∫ 3e^(3y)  dy  x.e^(2y)  = e^(3y)  + C   ∴ x = e^y  + Ce^(−3y)    (JS ♠⧫)
$$\frac{{dx}}{{dy}}\:=\:\mathrm{3}{e}^{{y}} −\mathrm{2}{x}\: \\ $$$$\frac{{dx}}{{dy}}\:+\:\mathrm{2}{x}\:=\:\mathrm{3}{e}^{{y}} \\ $$$${integrating}\:{factor}\: \\ $$$${u}\left({y}\right)\:=\:{e}^{\int\mathrm{2}\:{dy}} \:=\:{e}^{\mathrm{2}{y}} \\ $$$$\Leftrightarrow{e}^{\mathrm{2}{y}} \:\frac{{dx}}{{dy}}\:+\:\mathrm{2}{xe}^{\mathrm{2}{y}} \:=\:\mathrm{3}{e}^{\mathrm{3}{y}} \\ $$$$\frac{{d}}{{dy}}\:\left[\:{x}.{e}^{\mathrm{2}{y}} \:\right]\:=\:\mathrm{3}{e}^{\mathrm{3}{y}} \\ $$$$\int\:\frac{{d}}{{dy}}\left[{x}.{e}^{\mathrm{2}{y}} \right]\:{dy}\:=\:\int\:\mathrm{3}{e}^{\mathrm{3}{y}} \:{dy} \\ $$$${x}.{e}^{\mathrm{2}{y}} \:=\:{e}^{\mathrm{3}{y}} \:+\:{C}\: \\ $$$$\therefore\:{x}\:=\:{e}^{{y}} \:+\:{Ce}^{−\mathrm{3}{y}} \: \\ $$$$\left({JS}\:\spadesuit\blacklozenge\right) \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *