Menu Close

dy-dx-2xy-6y-e-y-2-




Question Number 102639 by bobhans last updated on 10/Jul/20
(dy/dx) −2xy = 6y e^y^2
$$\frac{{dy}}{{dx}}\:−\mathrm{2}{xy}\:=\:\mathrm{6}{y}\:{e}^{{y}^{\mathrm{2}} } \\ $$
Answered by Ar Brandon last updated on 10/Jul/20
Let y=vx ⇒(dy/dx)=v+x(dv/dx)  ⇒ v+x(dv/dx)−2vx^2 =6vxe^(v^2 x^2 )   ⇒x(dv/dx)=v(6xe^(v^2 x^2 ) +2x^2 −1)    Any idea to proceed ? Am I on the right track ?
$$\mathrm{Let}\:\mathrm{y}=\mathrm{vx}\:\Rightarrow\frac{\mathrm{dy}}{\mathrm{dx}}=\mathrm{v}+\mathrm{x}\frac{\mathrm{dv}}{\mathrm{dx}} \\ $$$$\Rightarrow\:\mathrm{v}+\mathrm{x}\frac{\mathrm{dv}}{\mathrm{dx}}−\mathrm{2vx}^{\mathrm{2}} =\mathrm{6vxe}^{\mathrm{v}^{\mathrm{2}} \mathrm{x}^{\mathrm{2}} } \\ $$$$\Rightarrow\mathrm{x}\frac{\mathrm{dv}}{\mathrm{dx}}=\mathrm{v}\left(\mathrm{6xe}^{\mathrm{v}^{\mathrm{2}} \mathrm{x}^{\mathrm{2}} } +\mathrm{2x}^{\mathrm{2}} −\mathrm{1}\right) \\ $$$$ \\ $$$${Any}\:{idea}\:{to}\:{proceed}\:?\:{Am}\:{I}\:{on}\:{the}\:{right}\:{track}\:? \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *