Menu Close

dy-dx-8x-4y-2x-y-1-2-y-




Question Number 167838 by cortano1 last updated on 27/Mar/22
      (dy/dx)=8x+4y+(2x+y−1)^2        y=?
$$\:\:\:\:\:\:\frac{{dy}}{{dx}}=\mathrm{8}{x}+\mathrm{4}{y}+\left(\mathrm{2}{x}+{y}−\mathrm{1}\right)^{\mathrm{2}} \\ $$$$\:\:\:\:\:{y}=? \\ $$
Answered by mr W last updated on 27/Mar/22
let u=2x+y−1  (du/dx)=2+(dy/dx)  (du/dx)−2=4u+4+u^2   (du/(u^2 +4u+6))=dx  (du/((u+2)^2 +2))=dx  ∫((d(((u+2)/( (√2)))))/((((u+2)/( (√2))))^2 +1))=(√2)∫dx  tan^(−1) ((u+2)/( (√2)))=(√2)x+C  u+2=(√2) tan ((√2)x+C)  2x+y+1=(√2) tan ((√2)x+C)  ⇒y=(√2) tan ((√2)x+C)−2x−1
$${let}\:{u}=\mathrm{2}{x}+{y}−\mathrm{1} \\ $$$$\frac{{du}}{{dx}}=\mathrm{2}+\frac{{dy}}{{dx}} \\ $$$$\frac{{du}}{{dx}}−\mathrm{2}=\mathrm{4}{u}+\mathrm{4}+{u}^{\mathrm{2}} \\ $$$$\frac{{du}}{{u}^{\mathrm{2}} +\mathrm{4}{u}+\mathrm{6}}={dx} \\ $$$$\frac{{du}}{\left({u}+\mathrm{2}\right)^{\mathrm{2}} +\mathrm{2}}={dx} \\ $$$$\int\frac{{d}\left(\frac{{u}+\mathrm{2}}{\:\sqrt{\mathrm{2}}}\right)}{\left(\frac{{u}+\mathrm{2}}{\:\sqrt{\mathrm{2}}}\right)^{\mathrm{2}} +\mathrm{1}}=\sqrt{\mathrm{2}}\int{dx} \\ $$$$\mathrm{tan}^{−\mathrm{1}} \frac{{u}+\mathrm{2}}{\:\sqrt{\mathrm{2}}}=\sqrt{\mathrm{2}}{x}+{C} \\ $$$${u}+\mathrm{2}=\sqrt{\mathrm{2}}\:\mathrm{tan}\:\left(\sqrt{\mathrm{2}}{x}+{C}\right) \\ $$$$\mathrm{2}{x}+{y}+\mathrm{1}=\sqrt{\mathrm{2}}\:\mathrm{tan}\:\left(\sqrt{\mathrm{2}}{x}+{C}\right) \\ $$$$\Rightarrow{y}=\sqrt{\mathrm{2}}\:\mathrm{tan}\:\left(\sqrt{\mathrm{2}}{x}+{C}\right)−\mathrm{2}{x}−\mathrm{1} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *