Menu Close

dy-dx-xy-y-2-x-2-y-1-2-




Question Number 181613 by Mastermind last updated on 27/Nov/22
(dy/dx)=((xy+y^2 )/x^2 )                   y(−1)=2    .
$$\frac{\mathrm{dy}}{\mathrm{dx}}=\frac{\mathrm{xy}+\mathrm{y}^{\mathrm{2}} }{\mathrm{x}^{\mathrm{2}} }\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{y}\left(−\mathrm{1}\right)=\mathrm{2} \\ $$$$ \\ $$$$. \\ $$
Answered by FelipeLz last updated on 27/Nov/22
(dy/dx) = (y/x)+(y^2 /x^2 )          y = ux ⇒ (dy/dx) = (du/dx)x+u  (du/dx)x = u^2   (1/u^2 )du = (1/x)dx  −(1/u) = ln∣x∣+c  u(x) = −(1/(ln∣x∣+c))  y(x) = −(x/(ln∣x∣+c))  y(−1) = 2 → (1/(ln∣−1∣+c)) = 2  (1/c) = 2 ⇒ c = (1/2)  y(x) = −((2x)/(2ln∣x∣+1))
$$\frac{{dy}}{{dx}}\:=\:\frac{{y}}{{x}}+\frac{{y}^{\mathrm{2}} }{{x}^{\mathrm{2}} }\: \\ $$$$\:\:\:\:\:\:\:{y}\:=\:{ux}\:\Rightarrow\:\frac{{dy}}{{dx}}\:=\:\frac{{du}}{{dx}}{x}+{u} \\ $$$$\frac{{du}}{{dx}}{x}\:=\:{u}^{\mathrm{2}} \\ $$$$\frac{\mathrm{1}}{{u}^{\mathrm{2}} }{du}\:=\:\frac{\mathrm{1}}{{x}}{dx} \\ $$$$−\frac{\mathrm{1}}{{u}}\:=\:\mathrm{ln}\mid{x}\mid+{c} \\ $$$${u}\left({x}\right)\:=\:−\frac{\mathrm{1}}{\mathrm{ln}\mid{x}\mid+{c}} \\ $$$${y}\left({x}\right)\:=\:−\frac{{x}}{\mathrm{ln}\mid{x}\mid+{c}} \\ $$$${y}\left(−\mathrm{1}\right)\:=\:\mathrm{2}\:\rightarrow\:\frac{\mathrm{1}}{\mathrm{ln}\mid−\mathrm{1}\mid+{c}}\:=\:\mathrm{2} \\ $$$$\frac{\mathrm{1}}{{c}}\:=\:\mathrm{2}\:\Rightarrow\:{c}\:=\:\frac{\mathrm{1}}{\mathrm{2}} \\ $$$${y}\left({x}\right)\:=\:−\frac{\mathrm{2}{x}}{\mathrm{2ln}\mid{x}\mid+\mathrm{1}}\: \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *