Menu Close

dy-dx-y-4y-3-3y-2-x-with-y-1-1-




Question Number 122281 by benjo_mathlover last updated on 15/Nov/20
  (dy/dx) = ((−y)/(4y^3 +3y^2 +x)) with y(1)=−1
$$\:\:\frac{{dy}}{{dx}}\:=\:\frac{−{y}}{\mathrm{4}{y}^{\mathrm{3}} +\mathrm{3}{y}^{\mathrm{2}} +{x}}\:{with}\:{y}\left(\mathrm{1}\right)=−\mathrm{1} \\ $$
Answered by liberty last updated on 15/Nov/20
(4y^3 +3y^2 +x)dy + ydx = 0  ⇒(4y^3 +3y^2 ) dy + d(xy) = 0  ⇒ ∫ (4y^3 +3y^2 )dy + ∫d(xy) = C  ⇒ y^4 +y^3 +xy = C  where y(1)=−1 give (−1)^4 +(−1)^3 +(1)(−1)=C  ⇒1−1−1 = C ; C = −1   ∵ y^4 +y^3 +xy +1 = 0.
$$\left(\mathrm{4y}^{\mathrm{3}} +\mathrm{3y}^{\mathrm{2}} +\mathrm{x}\right)\mathrm{dy}\:+\:\mathrm{ydx}\:=\:\mathrm{0} \\ $$$$\Rightarrow\left(\mathrm{4y}^{\mathrm{3}} +\mathrm{3y}^{\mathrm{2}} \right)\:\mathrm{dy}\:+\:\mathrm{d}\left(\mathrm{xy}\right)\:=\:\mathrm{0} \\ $$$$\Rightarrow\:\int\:\left(\mathrm{4y}^{\mathrm{3}} +\mathrm{3y}^{\mathrm{2}} \right)\mathrm{dy}\:+\:\int\mathrm{d}\left(\mathrm{xy}\right)\:=\:\mathrm{C} \\ $$$$\Rightarrow\:\mathrm{y}^{\mathrm{4}} +\mathrm{y}^{\mathrm{3}} +\mathrm{xy}\:=\:\mathrm{C} \\ $$$$\mathrm{where}\:\mathrm{y}\left(\mathrm{1}\right)=−\mathrm{1}\:\mathrm{give}\:\left(−\mathrm{1}\right)^{\mathrm{4}} +\left(−\mathrm{1}\right)^{\mathrm{3}} +\left(\mathrm{1}\right)\left(−\mathrm{1}\right)=\mathrm{C} \\ $$$$\Rightarrow\mathrm{1}−\mathrm{1}−\mathrm{1}\:=\:\mathrm{C}\:;\:\mathrm{C}\:=\:−\mathrm{1}\: \\ $$$$\because\:\mathrm{y}^{\mathrm{4}} +\mathrm{y}^{\mathrm{3}} +\mathrm{xy}\:+\mathrm{1}\:=\:\mathrm{0}.\: \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *