Menu Close

dy-dx-y-x-1-y-x-5-




Question Number 91139 by john santu last updated on 28/Apr/20
(dy/dx) = ((y−x+1)/(y−x+5))
$$\frac{{dy}}{{dx}}\:=\:\frac{{y}−{x}+\mathrm{1}}{{y}−{x}+\mathrm{5}} \\ $$
Commented by john santu last updated on 28/Apr/20
(dy/dx) = ((y−x+5−4)/(y−x+5)) = 1−(4/(y−x+5))  [ let Q=y−x ]   [(dQ/dx) = (dy/dx)−1 ]  ⇒(dQ/dx)+1 = 1−(4/(Q+5))   (dQ/dx) = −(4/(Q+5)) ⇒ (Q+5)dQ = −4dx  ∫ (Q+5)dQ = −4x+C  (1/2)(Q+5)^2 = C−4x   Q+5 = ± (√(2C−8x))   y−x+5 = ± (√(2C−8x))  y = x−5±(√(2C−8x))
$$\frac{{dy}}{{dx}}\:=\:\frac{{y}−{x}+\mathrm{5}−\mathrm{4}}{{y}−{x}+\mathrm{5}}\:=\:\mathrm{1}−\frac{\mathrm{4}}{{y}−{x}+\mathrm{5}} \\ $$$$\left[\:{let}\:{Q}={y}−{x}\:\right]\: \\ $$$$\left[\frac{{dQ}}{{dx}}\:=\:\frac{{dy}}{{dx}}−\mathrm{1}\:\right] \\ $$$$\Rightarrow\frac{{dQ}}{{dx}}+\mathrm{1}\:=\:\mathrm{1}−\frac{\mathrm{4}}{{Q}+\mathrm{5}}\: \\ $$$$\frac{{dQ}}{{dx}}\:=\:−\frac{\mathrm{4}}{{Q}+\mathrm{5}}\:\Rightarrow\:\left({Q}+\mathrm{5}\right){dQ}\:=\:−\mathrm{4}{dx} \\ $$$$\int\:\left({Q}+\mathrm{5}\right){dQ}\:=\:−\mathrm{4}{x}+{C} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}\left({Q}+\mathrm{5}\right)^{\mathrm{2}} =\:{C}−\mathrm{4}{x}\: \\ $$$${Q}+\mathrm{5}\:=\:\pm\:\sqrt{\mathrm{2}{C}−\mathrm{8}{x}}\: \\ $$$${y}−{x}+\mathrm{5}\:=\:\pm\:\sqrt{\mathrm{2}{C}−\mathrm{8}{x}} \\ $$$${y}\:=\:{x}−\mathrm{5}\pm\sqrt{\mathrm{2}{C}−\mathrm{8}{x}} \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *