Question Number 91139 by john santu last updated on 28/Apr/20
$$\frac{{dy}}{{dx}}\:=\:\frac{{y}−{x}+\mathrm{1}}{{y}−{x}+\mathrm{5}} \\ $$
Commented by john santu last updated on 28/Apr/20
$$\frac{{dy}}{{dx}}\:=\:\frac{{y}−{x}+\mathrm{5}−\mathrm{4}}{{y}−{x}+\mathrm{5}}\:=\:\mathrm{1}−\frac{\mathrm{4}}{{y}−{x}+\mathrm{5}} \\ $$$$\left[\:{let}\:{Q}={y}−{x}\:\right]\: \\ $$$$\left[\frac{{dQ}}{{dx}}\:=\:\frac{{dy}}{{dx}}−\mathrm{1}\:\right] \\ $$$$\Rightarrow\frac{{dQ}}{{dx}}+\mathrm{1}\:=\:\mathrm{1}−\frac{\mathrm{4}}{{Q}+\mathrm{5}}\: \\ $$$$\frac{{dQ}}{{dx}}\:=\:−\frac{\mathrm{4}}{{Q}+\mathrm{5}}\:\Rightarrow\:\left({Q}+\mathrm{5}\right){dQ}\:=\:−\mathrm{4}{dx} \\ $$$$\int\:\left({Q}+\mathrm{5}\right){dQ}\:=\:−\mathrm{4}{x}+{C} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}\left({Q}+\mathrm{5}\right)^{\mathrm{2}} =\:{C}−\mathrm{4}{x}\: \\ $$$${Q}+\mathrm{5}\:=\:\pm\:\sqrt{\mathrm{2}{C}−\mathrm{8}{x}}\: \\ $$$${y}−{x}+\mathrm{5}\:=\:\pm\:\sqrt{\mathrm{2}{C}−\mathrm{8}{x}} \\ $$$${y}\:=\:{x}−\mathrm{5}\pm\sqrt{\mathrm{2}{C}−\mathrm{8}{x}} \\ $$$$ \\ $$