Menu Close

dy-dx-y-x-2-y-2-x-




Question Number 89600 by jagoll last updated on 18/Apr/20
(dy/dx) = ((y+(√(x^2 −y^2 )))/x)
$$\frac{\mathrm{dy}}{\mathrm{dx}}\:=\:\frac{\mathrm{y}+\sqrt{\mathrm{x}^{\mathrm{2}} −\mathrm{y}^{\mathrm{2}} }}{\mathrm{x}}\: \\ $$
Commented by mr W last updated on 18/Apr/20
(dy/dx)=(y/x)+(√(1−((y/x))^2 ))  y=xu  (dy/dx)=u+x(du/dx)  u+x(du/dx)=u+(√(1−u^2 ))  x(du/dx)=(√(1−u^2 ))  (du/( (√(1−u^2 ))))=(dx/x)  ∫(du/( (√(1−u^2 ))))=∫(dx/x)  sin^(−1) u=ln x+C  sin^(−1) (y/x)=ln x+C  ⇒y=x sin (ln x+C)
$$\frac{{dy}}{{dx}}=\frac{{y}}{{x}}+\sqrt{\mathrm{1}−\left(\frac{{y}}{{x}}\right)^{\mathrm{2}} } \\ $$$${y}={xu} \\ $$$$\frac{{dy}}{{dx}}={u}+{x}\frac{{du}}{{dx}} \\ $$$${u}+{x}\frac{{du}}{{dx}}={u}+\sqrt{\mathrm{1}−{u}^{\mathrm{2}} } \\ $$$${x}\frac{{du}}{{dx}}=\sqrt{\mathrm{1}−{u}^{\mathrm{2}} } \\ $$$$\frac{{du}}{\:\sqrt{\mathrm{1}−{u}^{\mathrm{2}} }}=\frac{{dx}}{{x}} \\ $$$$\int\frac{{du}}{\:\sqrt{\mathrm{1}−{u}^{\mathrm{2}} }}=\int\frac{{dx}}{{x}} \\ $$$$\mathrm{sin}^{−\mathrm{1}} {u}=\mathrm{ln}\:{x}+{C} \\ $$$$\mathrm{sin}^{−\mathrm{1}} \frac{{y}}{{x}}=\mathrm{ln}\:{x}+{C} \\ $$$$\Rightarrow{y}={x}\:\mathrm{sin}\:\left(\mathrm{ln}\:{x}+{C}\right) \\ $$
Commented by jagoll last updated on 18/Apr/20
thank you
$$\mathrm{thank}\:\mathrm{you} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *