Menu Close

dy-dx-y-y-2-find-y-




Question Number 184066 by Matica last updated on 02/Jan/23
(dy/dx)=y(y+2). find  y=?
$$\frac{{dy}}{{dx}}={y}\left({y}+\mathrm{2}\right).\:{find}\:\:{y}=? \\ $$
Answered by mr W last updated on 02/Jan/23
∫(dy/(y(y+2)))=∫dx  ∫((1/y)−(1/(y+2)))dy=2∫dx  ln y−ln (y+2)=2x+C_1   ln (y/(y+2))=2x+C_1   (y/(y+2))=Ce^(2x)   ⇒y=(2/(1−Ce^(2x) ))−2
$$\int\frac{{dy}}{{y}\left({y}+\mathrm{2}\right)}=\int{dx} \\ $$$$\int\left(\frac{\mathrm{1}}{{y}}−\frac{\mathrm{1}}{{y}+\mathrm{2}}\right){dy}=\mathrm{2}\int{dx} \\ $$$$\mathrm{ln}\:{y}−\mathrm{ln}\:\left({y}+\mathrm{2}\right)=\mathrm{2}{x}+{C}_{\mathrm{1}} \\ $$$$\mathrm{ln}\:\frac{{y}}{{y}+\mathrm{2}}=\mathrm{2}{x}+{C}_{\mathrm{1}} \\ $$$$\frac{{y}}{{y}+\mathrm{2}}={Ce}^{\mathrm{2}{x}} \\ $$$$\Rightarrow{y}=\frac{\mathrm{2}}{\mathrm{1}−{Ce}^{\mathrm{2}{x}} }−\mathrm{2} \\ $$
Commented by Matica last updated on 02/Jan/23
Ok. Thank you.
$${Ok}.\:{Thank}\:{you}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *