Menu Close

dy-tan-1-y-1-y-2-




Question Number 176187 by gloriousman last updated on 14/Sep/22
∫(dy/(tan^(−1) y(1+y^2 )))
$$\int\frac{\mathrm{dy}}{\mathrm{tan}^{−\mathrm{1}} \mathrm{y}\left(\mathrm{1}+\mathrm{y}^{\mathrm{2}} \right)} \\ $$
Answered by BaliramKumar last updated on 14/Sep/22
∫(dy/(tan^(−1) y(1+y^2 )))    put         tan^(−1) (y) = x               (dy/(1+y^2 )) = dx  ∫(1/x)dx = ln∣x∣ + C  ∫(dy/(tan^(−1) y(1+y^2 ))) = ln∣tan^(−1) (y)∣ + C
$$\int\frac{\mathrm{dy}}{\mathrm{tan}^{−\mathrm{1}} \mathrm{y}\left(\mathrm{1}+\mathrm{y}^{\mathrm{2}} \right)} \\ $$$$ \\ $$$${put}\:\:\:\:\:\:\:\:\:{tan}^{−\mathrm{1}} \left({y}\right)\:=\:{x} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\frac{{dy}}{\mathrm{1}+{y}^{\mathrm{2}} }\:=\:{dx} \\ $$$$\int\frac{\mathrm{1}}{{x}}{dx}\:=\:{ln}\mid{x}\mid\:+\:\mathrm{C} \\ $$$$\int\frac{\mathrm{dy}}{\mathrm{tan}^{−\mathrm{1}} \mathrm{y}\left(\mathrm{1}+\mathrm{y}^{\mathrm{2}} \right)}\:=\:{ln}\mid{tan}^{−\mathrm{1}} \left({y}\right)\mid\:+\:\mathrm{C} \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *