Menu Close

e-2x-1-x-1-2x-2-dx-e-2x-1-sin-2x-1-cos-2x-dx-Solve-above-Questions-by-using-the-formulae-e-kx-f-kx-f-kx-dx-e-kx-f-kx-c-




Question Number 54699 by rahul 19 last updated on 09/Feb/19
∫ e^(2x)  ((1/x) −(1/(2x^2 )))dx  ∫e^(2x)  (((1+sin 2x)/(1+cos 2x)))dx.  Solve above Questions by using the  formulae :  ∫e^(kx) {f(kx)+f ′(kx)}dx= e^(kx)  f(kx)+c.
e2x(1x12x2)dxe2x(1+sin2x1+cos2x)dx.SolveaboveQuestionsbyusingtheformulae:ekx{f(kx)+f(kx)}dx=ekxf(kx)+c.
Commented by maxmathsup by imad last updated on 10/Feb/19
let I =∫  ((1/x)−(1/(2x^2 )))e^(2x) dx ⇒I =∫  (e^(2x) /x)dx  −∫   (e^(2x) /(2x^2 ))   by psrts  ∫  (e^(2x) /x)dx =(1/(2x)) e^(2x)  −∫  −(1/(2x^2 ))e^(2x)  =(1/(2x)) e^(2x)  +∫  (e^(2x) /(2x^2 )) ⇒  I = (e^(2x) /(2x)) +∫  (e^(2x) /(2x^2 )) −∫  (e^(2x) /(2x^2 ))dx +c ⇒ I =(e^(2x) /(2x)) +c .
letI=(1x12x2)e2xdxI=e2xxdxe2x2x2bypsrtse2xxdx=12xe2x12x2e2x=12xe2x+e2x2x2I=e2x2x+e2x2x2e2x2x2dx+cI=e2x2x+c.
Commented by rahul 19 last updated on 10/Feb/19
thank you profAbdo .
Commented by maxmathsup by imad last updated on 11/Feb/19
you are welcome sir.
youarewelcomesir.
Answered by kaivan.ahmadi last updated on 09/Feb/19
f(x)=(2/x)⇒f(2x)=(1/x)⇒f′(x)=((−2)/x^2 )⇒  f′(2x)=((−1)/(2x^2 ))  ∫e^(2x) ((1/x)−(1/(2x^2 )))dx=e^(2x) f(2x)+c=(e^(2x) /x)+c
f(x)=2xf(2x)=1xf(x)=2x2f(2x)=12x2e2x(1x12x2)dx=e2xf(2x)+c=e2xx+c
Commented by rahul 19 last updated on 09/Feb/19
Sir, if f(2x)=(1/x) then f ′(2x) should be  ((−1)/x^2 ) ? Isn′t it?
Sir,iff(2x)=1xthenf(2x)shouldbe1x2?Isntit?
Commented by kaivan.ahmadi last updated on 09/Feb/19
yes it is,thank you. the answer of your integral is not true,because  (e^(kx) f(kx))^′ =ke^(2x) (f(kx)+f′(kx))
yesitis,thankyou.theanswerofyourintegralisnottrue,because(ekxf(kx))=ke2x(f(kx)+f(kx))
Answered by tanmay.chaudhury50@gmail.com last updated on 09/Feb/19
1)(1/2)∫[(1/x)×(d/dx)(e^(2x) )+e^(2x) (d/dx)((1/x))]dx  (1/2)∫(d/dx)((1/x)e^(2x) )dx  (1/2)((e^(2x) /x))+c  2)∫e^(2x) (((1+2sinxcosx)/(2cos^2 x)))  ∫e^(2x) ((1/2)sec^2 x+tanx)dx  (1/2)∫[e^(2x) ×(d/dx)(tanx)+tanx×(d/dx)(e^(2x) )]dx  =(1/2)∫(d/(dx ))(e^(2x) tanx)dx  ((e^(2x) tanx)/2)+c
1)12[1x×ddx(e2x)+e2xddx(1x)]dx12ddx(1xe2x)dx12(e2xx)+c2)e2x(1+2sinxcosx2cos2x)e2x(12sec2x+tanx)dx12[e2x×ddx(tanx)+tanx×ddx(e2x)]dx=12ddx(e2xtanx)dxe2xtanx2+c
Commented by rahul 19 last updated on 10/Feb/19
thank you sir �� but how to do by using given formulae ?

Leave a Reply

Your email address will not be published. Required fields are marked *