Menu Close

e-2x-2-x-dx-




Question Number 106391 by Ar Brandon last updated on 05/Aug/20
∫e^(2x^2 +x) dx
$$\int\mathrm{e}^{\mathrm{2x}^{\mathrm{2}} +\mathrm{x}} \mathrm{dx} \\ $$
Answered by Sarah85 last updated on 05/Aug/20
t=(√2)(x+(1/4)) ⇔ x=((√2)/2)t−(1/4) ⇒ dx=((√2)/2)dt  ((√2)/2)∫e^(t^2 −(1/8)) dt=((√2)/(2e^(1/8) ))∫e^t^2  dt=((√(2π))/(4e^(1/8) ))∫((2e^t^2  )/( (√π)))dt=  =((√(2π))/(4e^(1/8) ))erfi t =((√(2π))/(4e^(1/8) ))erfi ((√2)(x+(1/4))) +C
$${t}=\sqrt{\mathrm{2}}\left({x}+\frac{\mathrm{1}}{\mathrm{4}}\right)\:\Leftrightarrow\:{x}=\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}{t}−\frac{\mathrm{1}}{\mathrm{4}}\:\Rightarrow\:{dx}=\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}{dt} \\ $$$$\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\int\mathrm{e}^{{t}^{\mathrm{2}} −\frac{\mathrm{1}}{\mathrm{8}}} {dt}=\frac{\sqrt{\mathrm{2}}}{\mathrm{2e}^{\mathrm{1}/\mathrm{8}} }\int\mathrm{e}^{{t}^{\mathrm{2}} } {dt}=\frac{\sqrt{\mathrm{2}\pi}}{\mathrm{4e}^{\mathrm{1}/\mathrm{8}} }\int\frac{\mathrm{2e}^{{t}^{\mathrm{2}} } }{\:\sqrt{\pi}}{dt}= \\ $$$$=\frac{\sqrt{\mathrm{2}\pi}}{\mathrm{4e}^{\mathrm{1}/\mathrm{8}} }\mathrm{erfi}\:{t}\:=\frac{\sqrt{\mathrm{2}\pi}}{\mathrm{4e}^{\mathrm{1}/\mathrm{8}} }\mathrm{erfi}\:\left(\sqrt{\mathrm{2}}\left({x}+\frac{\mathrm{1}}{\mathrm{4}}\right)\right)\:+{C} \\ $$
Commented by Ar Brandon last updated on 05/Aug/20
Thanks

Leave a Reply

Your email address will not be published. Required fields are marked *